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INTRODUCTION

The very interesting phenomena of ascending
twisting flows (ATFs) of air are very often encountered
in nature. Tornados and tropical cyclones serve as
examples of such flows (see [1–3]). In spite of the fact
that a large number of researchers have been investi�
gating the ATF problem for decades (for a detailed
bibliography, see, e.g., [3]), their studies still lack a suf�
ficiently convincing theory that explains the reasons of
origination, functioning, and natural disappearance of
such flows, verified by experimental methods and ade�
quate mathematical simulation.

A specific scheme of the origination and stable
functioning of ATFs is proposed in [4]. The initial
motion upon ATF origination is the vertical ascending
motion of hot air caused by local heating of land or
water areas (and neighboring air masses) by solar
energy.

The arrows in Fig. 1a show an ascending flow, while
the bold lines mark a warm region of the Earth’s sur�
face. The observations show that tropical cyclones and
tornadoes originate in the regions of the Earth where
the surface and neighboring air masses are strongly
heated. Ascending air volumes are interchanged with
new ones that enter the region of the ascending flow
from below (see Fig. 1b). This is how the near�bottom
section of an ascending flow is formed.

The initial near�bottom motion along the Earth’s
surface is radial: from the periphery regions to the bot�
tom of an ascending heat flow from all sides. In Fig. 2a,
the initial radial motion in the xOy plane is represented
by velocity vectors V of individual gas particles, while

the shaded circle shows the region of an ascending
heat flow.

Apart from the horizontal air motion, a circumfer�
ential flow, namely gas twisting, is generated in the
formed near�bottom section under the action of the
Coriolis force (CF). This situation is illustrated in Fig. 2a,
where Fc are the CF vectors acting on the material par�
ticles that move with the velocities V toward the com�
mon center. It is known [5] that under the action of
CFs each individually moving particle in the northern
hemisphere deviates to the right from the direction of
its motion; in the southern hemisphere, the deviation
is to the left. This yields gas twisting in the moving
continuum, namely in the positive direction in the
northern hemisphere and in the negative direction in
the southern hemisphere.

If an ascending flow and the air motion toward its
bottom are preserved for a long time, the Earth’s rota�
tion will yield substantial twisting of the air in the
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Fig. 1. Origination of a convective ascending flow.
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near�bottom section of the ATF. This is the beginning
of self�sustaining stable ATF functioning.

The energy required for this self�sustaining motion
of air masses is supplied as follows (see Fig. 2b): (1) the
Earth’s rotation twists a gas in the near�bottom region;
(2) gas twisting is transferred to the vertical section;
(3) the centrifugal force creates a “tube with draft” in
the vertical section, i.e., the pressure in the vicinity of
its axis drops and there appears the effect of impene�
trable walls since the air pressure in the vertical ATF
section at its boundary coincides with the pressure of
the external resting air; (4) the air (which is external
with respect to the ATF) is pressed in the “tube with a
draft” (where the pressure in the center is low) under
the action of gravity.

The fact that twisting makes the flow in the vertical
section stable is of principle significance. Note that the
described scheme is in agreement with all hydrody�
namic effects observed in tornados and tropical
cyclones.

EXPERIMENTAL RESULTS

The process of ATF origination, the direction of its
twisting, and the ATF structure proposed in [4] are
confirmed by the experiments described in [3, 6–14].

In these experiments, a free vortex is generated
above a metal table due to its heating from below. The
term “free vortex” means that there is no forced twist�
ing in the experiment, i.e., no convective flow gener�
ated due to heating, no initial air in the room, no table
(before heating and in the process of heating). A free
vortex predominantly twists in the positive direction
(following the terminology of [3, 6–14], left�screw
motion) since Moscow is in the northern hemisphere.
The comparison of the experimental data with the data
of field tornado observations and visualization of the
free vortex motion reveals the identity of the experi�
mental flows with those observed in nature; in partic�
ular, twisting of the air volumes adjacent from the
inside to the outer boundary of the vertical sections is
clearly fixed.

One of the main results of experiments [6–14] is to
create conditions for the destruction of a vortex with
vertical grids. The grid parameters are determined:
size of cells, wire thickness, and the hight at which the
destruction of the vortex with specific characteristics is
most probable. 

The experimentally ascertained fact of ATF
destruction with a vertical grid, taking the proposed
scheme of functioning of these flows into account [4],
can be substantiated by the following gas dynamic
considerations. In the presence of a solid vertical wall
that rotates in the near�bottom section, the flow does
not allow the vertical section of the vortex to approach
the solid wall and makes the vortex either reflect at it
or move in the parallel direction. If a grid obstacle
blocks the vortex motion, the near�bottom vortex sec�
tion passes through it almost without destruction.
However, when the vertical section approaches the
grid, the grid positioned at a tangent to the rotating
vertical section hinders rotation and decelerates the
circumferential component of the air velocity vector.
Due to the decrease (or elimination) of twisting and
“tube wall” damage, the flow stability in the vertical
section decreases as well, and the external nonrotating
air brings the vortex as a whole to a stop. The method
for terminating the air motion in the ATF by damaging
the “tube walls” is also proposed in the patent [15].

MATHEMATICAL SIMULATION

As distinct from the previous studies, the flows in
the ATF are simulated in [4, 16, 17] using a set of
equations of gas dynamics since it most adequately
describes an ideal gas flow. In particular, plain isen�
tropic flows in the ATF near�bottom region are simu�
lated with the solutions to the following set of equa�
tions with partial derivatives

(1)

Here, t is the time; r is the distance to the origin in
the xOy plane; c = ρ(γ – 1)/2 is the speed of sound; ρ is
the gas density; γ = 1.4 is the adiabatic (polytrope)
exponent of the air; u,  are the radial and circumfer�
ential components of the gas velocity vector;
a = 2Ωsinψ, where Ω is the modulus of the Earth’s
angular rotation; and ψ is the latitude of the point of
the plane frame origin. In set (1), with the help of
scaled values of velocity, speed of sound, time, and dis�
tance (u00, c00, t00, r00), the following dimensionless
variables were introduced in the standard manner: f =

/f00, where  and f00 are the dimensional and scaled
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Fig. 2. The structure of a flow in the near�bottom and ver�
tical sections of an ascending twisted flow.
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values of f. In this case, it is assumed that u00 = r00/t00,
c00 = u00.

The beginning of formation of the ATF near�bot�
tom region is simulated with solution of the following
drain problem.

Let the resting gas whose speed of sound is equal to
unity be at the instant t = 0 to the right of the point
r = r0 = const > 0. Starting from the instant t = 0, the
gas starts smoothly draining at the point r = r0 in
accordance with the assigned law

(2)

In this case, it is implied that, starting from the
instant t = 0, the air in the 0 ≤ r ≤ r0 starts moving
upward, e.g., like an ascending convective flow. This,
in turn, determines the negative radial velocity in the
plain near�bottom flow.

For the solution to the drain problem to be con�
structed, it is necessary to join the desired flow through
the acoustic characteristic

to the uniform resting gas.
Theorem: For problem (1), (2), with the side con�

ditions

 
there is a unique analytical solution, and the circum�
ferential speed can be represented as follows:

(3)

where ξ = t – r + r0, ς = r – r0, and

(4)

The proof of the theorem is not given here, since
the key stages of this procedure repeat those of the the�
orem proof from [17].

It follows from formulas (3) and (4) that at a > 0
(northern hemisphere) we have

For the southern hemisphere (a < 0), the sign “less”
should be used in the last inequality. Thus, immedi�
ately at t > 0, the gas flow formed in the process of
smooth radial gas drain on the r = r0 circumference
starts twisting in some vicinity of the acoustic C+ char�
acteristic under the action of the Coriolis force: in the
positive and negative directions for the northern and
southern hemispheres, respectively.

The gas�dynamic parameters of a stationary flow
that is formed with time in the near�bottom region are
determined in the process of the numerical solution of
set (1), with the equality ∂/∂t = 0 taken into account.
Figure 3 shows four streamlines of the stationary flow
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at the following entry parameters: c00 = 333 m/s, r00 =
20 m, sinψ = 0.866, and r0 = 0.0012, which corre�
sponds to the dimensional value of 0.024 m. In Fig. 3,
a meter is taken as the unit of distance. The dimensional
values of the radial and circumferential velocities of the
drain circumference (i.e., at r = r0) are 0.139 m/s and
1.066 m/s, respectively. The obtained magnitudes cor�
respond to the results of specific experiments consid�
ered in [14].

A specific streamline of the stationary flow is
numerically reconstructed in the form of the ϕ = ϕ(r)
dependence when constructing a solution to the fol�
lowing Cauchy problem:

where uo,  are the radial and circumferential compo�
nents of the gas velocity vector in a stationary flow; ϕ is
the polar angle; and rin is the inflow radius. The differ�
ential equation in the Cauchy problem is a corollary
fact of the following set of ordinary differential equa�
tions:

The path of an individual gas particle is reconstructed
upon the solution of this set of equations.

It should be noted that the density on the drain cir�
cumference turned out to be ρ(r0) = 1 – 4.3 × 10–6.
This magnitude almost does not differ from the unit
density of an unperturbed gas. However, if we perform
a priori simulation of an incompressible fluid flow, the
corresponding stationary problem (under the condi�
tion of satisfiability of the equation of state of the ana�
lyzed gas) lacks a solution.

CONCLUSIONS

The solution to the initial�edge problem for a set of
gas dynamics equations which substantiates the fact of
origination and direction of twisting of the ascending
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Fig. 3. Isolated streamlines of the flow in the near�bottom
region. 
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flow is derived. The near�bottom region of a stationary
ascending flow whose parameters are close to the gas�
dynamic parameters of free vortices in available exper�
iments has been calculated.
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