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Abstract—We consider the problem of approximating a function defined on a uniform mesh by
the method of local polynomial spline-approximation where the mesh of the nodes of the spline is
chosen displaced relative to the mesh of the initial data. Conditions are established for the local form
preservation by the spline of the initial data. We study the approximative properties of the method for
the case of the simplest local approximation formula and find the optimal values of the displacement
parameters.

DOI: 10.3103/S1055134413010069

Keywords: local spline-approximation, displaced data, Schoenberg approximation.

1. INTRODUCTION

Suppose that, in the nodes of a uniform mesh {jh}j∈Z with step h on the real axis, we are given the
values {yj}j∈Z of some function f(x), yj = f(jh), j ∈ Z. Denote by B(x) = Bn,0(x) the normalized
polynomial B-spline (of minimal defect) of degree n with support

[
0, (n + 1)h

]
and nodes 0, h, . . . , (n +

1)h (for example, see [17]), and its displacement (shift) along the real axis αh (α ∈ R) will be denoted
by Bn,α(x), i.e., Bn,α(x) = B(x − αh).

Denote by L∞ = L∞(R) the class of essentially bounded functions with the usual definition of the
norm

‖f‖∞ = ess sup
{∣

∣f(x)
∣
∣ : x ∈ R

}

and denote by W r
∞ =

{
f : f (r−1) ∈ AC,

∥
∥f (r)

∥
∥
∞ � 1

}
(r ∈ N) the class of Sobolev functions.

It is known that the functions
{
Bn,j(x)

}
j∈Z

constitute a basis in the space of all polynomial splines on

the mesh {jh}j∈Z. Usually, to consider splines of even degree (n is even), the mesh node of the spline is
chosen displaced by one half step relative to the mesh of the nodes of the function; namely, {jh+h/2}j∈Z,

i.e., the system
{
Bn,j+1/2(x)

}
j∈Z

is chosen as a basis. Every spline s(x) of degree n can be written down
as

s(x) =
∑

j

bjBn,j−(n+1)/2(x).

A spline s(x) is called local if the coefficients bj are defined by explicit formulas. They can also be
determined from the interpolation conditions but, in this case, for their determination, one has to solve a
system of equations. To approximate a given function f(x) by a local spline, the coefficients bj are given
by the values and derivatives of f(x) in some small neighborhood of the node jh, for example, in the form
of some functionals which can be written as linear combinations of the values of f(x) in the mesh nodes.
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Local approximation methods have become a standard tool in approximation theory and numerical
analysis, mainly as a useful alternative to interpolation. Their main advantage is that, unlike in inter-
polation, there is no need to solve any system of equations. Moreover, the use of local approximation
does not necessarily lead to a loss of accuracy compared with interpolation. There are schemes of local
approximation in which, as in the case of interpolation, the maximal order of accuracy is attained. These
are often called quasi-interpolation.

Well known is the simplest local approximation formula

s(x) =
∑

j

yjBn,j−(n+1)/2(x) (1)

which approximates a smooth function f(x) up to O(h2). In general, (nonuniform mesh), the formula
has only first approximation order but, on a uniform mesh, it coincides with the Schoenberg approxima-
tion [10] which diminishes variation and always has second order. The operator Schoenberg operator is a
positive operator, and so it can only approximate smooth functions with at most second order [4]. But the
property of variation-diminishing guarantees the inheritance by the Schoenberg spline of such properties
as positivity, monotonicity, and convexity, in their presence for the approximated function f(x). Even
low-degree interpolation splines in general do not preserve such geometric properties. Simple sufficient
conditions for form preservation (preservation of sign-definiteness of some derivative) with interpolation
by cubic splines, are established in [15].

The simplest formula (1) for n = 2 was studied in detail in [14] (for a nonuniform mesh, in [11]).
It is interesting to note that, in the periodic case on parabolic splines, this simple scheme implements
the Kolmogorov width and the relative width of the function class W 2

∞ [14], both for the function and
for the derivative. The simplest formula (1) for cubic splines (n = 3) gives a greater constant in the
estimation of the approximation error compared with n = 2 (1/6 instead of 1/8), but, in the estimate
for the approximation of the derivative, the constant 1/2 is preserved [17] (including for a nonuniform
mesh [9]).

De Boor and Fix showed in [1] that if, in (1), the values yj are replaced by some functionals λjf
calculated not only via the values of f(x) but also by means of the values of its derivatives then this
expression approximates f(x) with the same maximal order O(hn+1) as an interpolation spline of the
same degree (this property explains the meaning of the term quasi-interpolation). Later Lyche and
Schumaker showed in [6] that the maximal order may be attained using only the values of f(x) (without
derivatives). Both these local approximations are accurate (see [1, 6]) in the space Pn of the polynomials
of degree n, i.e., the resulting spline s(x) reproduces a function f(x) that is a polynomial of degree n. The
simplest formula (1) is accurate only on P1. It is established (for example, see [17]) that if in the formula

s(x) =
∑

j

IjBn,j−(n+1)/2(x), (2)

where Ij =
∑

m∈M cmyj+m and M is a set of integer indices, the coefficients cm are chosen from the
condition of the accuracy of the formula on Pk (k � n) then s(x) approximates any sufficiently smooth
function f(x) with order O(hk+1).

Of course, of the greatest interest are the approximations accurate on Pn having the maximal
accuracy order O(hn+1). Explicit formulas for these approximations are written down for small n. The
case of cubic splines n = 3 (in general, for nonuniform meshes) is considered in detail in [17] and for
parabolic splines (n = 2) in [5]. In [3], Korneı̆chuk found accurate estimates for the approximation of
some classes of differentiable functions.

In this article, we consider a local approximation of the form

s(x) =
∑

j

IjBn,j+α(x), (3)

where

Ij =
∑

m∈M

cmyj+m, (4)
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M is a set of integers, and the node mesh of the spline is displaced by αh relative to the mesh of
the known values of the approximated function f(x). For splines of an arbitrary odd degree, only the
case α = 0 has been considered, and for cubic splines, Strelkova in [12] studied the approximation
for α = 1/2. For splines of even degree, only the case α = 1/2 was studied, and for parabolic splines
(n = 2), the case of arbitrary α (see [13]). In Section 2, we study the form-preserving properties of a
local approximation method of the form (3) and (4); here we establish conditions of the k-monotonicity
of the local spline. In Section 3, we study the approximate properties of the simplest formula (Ij = yj)
of local approximation with displacement αh and find an optimal value of the displacement parameter α
that guarantees the maximal possible approximation order for the simplest formula.

2. FORM-PRESERVING PROPERTIES OF LOCAL APPROXIMATION

We consider local approximation of the form (3) and (4). Since this is a local approximation, the
set M should contain a small number of indices. Denote by m0 and m1 the smallest and greatest indices
in M , respectively. We may assume that M contains all the integers from m0 to m1 by putting cm = 0 for
m0 < m < m1 not contained in M . We are interested in the possibility of the preservation of the (local)
geometric characteristics of the approximated function f(x), i.e., of the preservation of k-monotonicity.
Explain what is meant by the preservation of k-monotonicity.

Let Δkyj =
∑k

s=0(−1)k−sCs
kyj+s be the finite difference of order k of the given values of the function

of yj = f(jh) with step h (here Cs
k are the binomial coefficients). If for some k (k � n), all the finite

differences Δkyj of order k (for k = 0, these are the values yj themselves) are nonnegative then the
corresponding derivative of the spline s(x) must be nonnegative too; i.e., s(k)(x) � 0. Under the local
preservation of k-monotonicity we understand the nonnegativity of the function s(k)(x) on some
interval of the mesh because of the nonnegativity of some number of finite differences Δkyj close to
the interval under consideration. Note that, for small values of k, k-monotonicity has special names:
k = 0 — nonnegativity, k = 1 — monotonicity, k = 2 — convexity.

Theorem 1. Suppose that cm � 0, m ∈ M . A spline of the form (3) and (4) inherits the
properties of the k-monotonicity of the initial data {yj}; namely:

1) if yj � 0 for j = m0 − n + l, . . . ,m1 + l then s(x) � 0 for x ∈
[
(l + α)h, (l + 1 + α)h

]
;

2) if Δkyj � 0 (1 � k � n) for j = m0 − n + l, . . . ,m1 + l − k then s(k)(x) � 0 for x ∈
[
(l +

α)h, (l + 1 + α)h
]
.

Proof. Let x ∈
[
(l + α)h, (l + 1 + α)h

]
for some l ∈ Z. Then the sum in (3) contains finitely many

summands

s(x) =
l∑

j=l−n

IjBn,j+α(x). (5)

Since Ij = cm0yj+m0 + · · · + cm1yj+m1 , the sum (5) contains the initial data from yl−n+m0 to yl+m1 .
Consequently, if the values yl−n+m0 , . . . , yl+m1 are nonnegative then so are Il−n, . . . , Il. Thus, if x ∈[
(l + α)h, (l + 1 + α)h

]
then s(x) � 0; the first part of the theorem is proven.

The second part follows from similar arguments and the following two lemmas.

Lemma 1. ΔkIj = cm0Δ
kyj+m0 + · · · + cm1Δ

kyj+m1 .

Lemma 2. s(k)(x) = h−k
l−k∑

j=l−n

ΔkIjBn−k,j+k+α(x).

Proof of Lemma 1 immediately follows from the definition of the finite difference and the representa-
tion (4), and the proof of Lemma 2 results from the formula for the derivative of a spline expanded in B-
splines (see [17]).

The conditions cm � 0, m ∈ M , in Theorem 1 are not only sufficient for the preservation of k-
monotonicity for each k � n but also necessary on the class of k-monotone functions. It is clear that
these conditions define a positive linear approximation method (3) and (4). This means (see [4]) that
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the approximation order by the local splines (3) and (4) provided that cm � 0, m ∈ M , of functions
differentiable at least twice can not be greater than h2. Thus, the use of a local approximation accurate on
the space of the polynomials of degree at least one, i.e., Pk (k > 1), is possible only if the coefficients cm

in (4) have different signs. This means that the preservation of k-monotonicity does not hold for every
approximated k- monotone function.

Note that the simplest local approximation formula (Ij = yj) always preserves the k-monotonicity
of the initial data. In the classical case

(
α = −n+1

2

)
, such a scheme coincides with the Schoenberg

variation-diminishing approximation for a uniform mesh. It is known (see [7]) that, in the case of an
arbitrary mesh, the Schoenberg spline preserves k-monotonicity for k = 0, 1, 2 but does not for k = 3.
As far as we know, the question of the preservation of k-monotonicity for k � 3 has not been considered
for a uniform mesh before.

3. THE SIMPLEST LOCAL APPROXIMATION FORMULA

In this section, we study the approximate properties of the simplest local approximation formula
(Ij = yj) with displacement αh and find out the influence of α on the accuracy of the formula.

It is known (see [7]) that the simplest formula on a uniform mesh reconstructs degree-one polyno-
mials. Though the functions x2 are no longer reconstructed by the simplest formula, as follows from
Marsden’s Identity (see [7]), if {tj} is the mesh of the nodes of a spline of degree n then the functions xk

(k � n) can be expanded in B-splines; in particular, the following formulas hold:

x =
∑

j

t∗jBn,j+α(x), x2 =
∑

j

t∗∗j Bn,j+α(x),

where

t∗j = (tj+1 + · · · + tj+n)/C1
n,

t∗∗j = (tj+1tj+2 + tj+1tj+3 + · · · + tj+n−1tj+n)/C2
n.

In our case,

t∗j =
(

j + α +
n + 1

2

)
h, t∗∗j = (t∗j )

2 − n + 1
12

h2.

The following two lemmas are valid.

Lemma 3.
∑

j
(jh − x)Bn,j+α(x) = −

(
α +

n + 1
2

)
h.

Lemma 4.
∑

j
(jh − x)2Bn,j+α(x) =

(
α +

n + 1
2

)2

h2 +
n + 1
12

h2 for n � 2.

The expressions on the right-hand sides in Lemmas 3 and 4 are independent of x, but for splines of
degree one (n = 1), the expression obtained for the sum on the left-hand side of 4 already depends on x;
namely, if x = (l + α + t)h, 0 � t � 1, then we have the equality

∑

j

(jh − x)2B1,j+α(x) = (α + 1)2h2 + t(1 − t)h2. (6)

Now, Lemmas 3 and 4 enable us to get the expansion of the spline

s(x) = sn,α(f, x) =
∑

j

yjBn,j+α(x)

by Taylor’s formula at the point x for a function f ∈ Cr (r � 3). Take

x ∈
[
(l + α)h, (l + 1 + α)h

]
.
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Since

yj = f(jh) = f(x) + f ′(x)(jh − x) +
1
2
f ′′(x)(jh − x)2 + O(h3),

we have

sn,α(f, x) = f(x) + f ′(x)
l∑

j=l−n

(jh − x)Bn,j+α(x)

+
1
2
f ′′(x)

l∑

j=l−n

(jh − x)2Bn,j+α(x) + O(h3).

After easy transformations, for n � 2, we infer by Lemmas 3 and 4 that

sn,α(f, x) = f(x) − f ′(x)h
[
α +

n + 1
2

]

+
1
2
f ′′(x)h2

[(
α +

n + 1
2

)2

+
n + 1
12

]

+ O(h3). (7)

As follows from (6), for n = 1, instead of the value n+1
12 , this equality contains the expression t(1 − t).

We see from expansion (7) that, for any value of the displacement parameter α, the simplest local
approximation formula approximates the initial function with the first order, and only α = −n+1

2 yields
an increase of the order of approximation. The approximation order becomes equal to h2, and this is the
best value of α. Note that, for α = −n+1

2 , we obtain the classical simple local approximation formula
in which the value yj is taken in the middle of the support of the corresponding B-spline Bn,j+α(x).
Therefore, we have:

Theorem 2. If f ∈ Cr, r � 3, then the estimate

‖sn,α − f‖∞ � n + 1
24

h2‖f ′′‖∞ + O(h3). (8)

holds for α = −n+1
2 (n � 2).

An analogous estimate is valid also for splines of degree one but the constant in (8) is somewhat
larger; namely, it is the same as for n = 2 (see [17]), i.e.,

‖s1,−1 − f‖∞ � 1
8
h2‖f ′′‖∞ + O(h3).

Observe that estimate (8) of Theorem 2 was established in 1965 by Schoenberg [10]. We now prove
that we can discard the terms of order O(h3) in (8).

Theorem 3. If α = −n+1
2 (n � 2) then

sup
f∈W 2

∞

‖sn,α − f‖∞ =
n + 1
24

h2. (9)

Proof. Suppose that α = −n+1
2 , x ∈

[(
l − n+1

2

)
h,

(
l + 1 − n+1

2

)
h
]

. Then

∣∣sn,α(f, x) − f(x)
∣∣ =

∣
∣∣
∣∣

l∑

j=l−n

Bn,j−(n+1)/2(x)
∫ jh

x
(jh − τ)f ′′(τ)dτ

∣
∣∣
∣∣
.

Since the factors at f ′′(τ) are nonnegative in each summand, we have
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∣
∣sn,α(f, x) − f(x)

∣
∣ �

⎛

⎝
l∑

j=l−n

Bn,j−(n+1)/2(x)
∫ jh

x
(jh − τ)dτ

⎞

⎠ ‖f ′′‖∞

=

⎡

⎣
l∑

j=l−n

1
2
(jh − x)2Bn,j−(n+1)/2(x)

⎤

⎦ ‖f ′′‖∞

=
n + 1
24

h2‖f ′′‖∞,

with equality attained for f(x) = x2/2.

Note that, for parabolic splines (n = 2), Theorem 3 was proved by Subbotin [14] who showed that,
in the periodic case, this method realizes both Kolmogorov and Konovalov widths. Estimate (9) of
Theorem 3 is well known also for cubic splines (see [17]).

For splines of arbitrary degree (the Schoenberg splines), apart from estimates in the class of
continuous functions (see [7, 8, 10]), there are known estimates in L1 with extension to Lp [2].

The present article is an exposition of a part of the talk at the Russian Conference “Methods of
Spline-Functions” dedicated to the 80th anniversary of Yu. S. Zavyalov (see [16]).
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