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Abstract—We consider the problem of interpretation of three-dimensional images from their
flat projections up to the set of visible faces. For projections of convex polyhedra, we present an
interpretation algorithm based on maximal feasible subsystems of a certain infeasible system of
linear inequalities modeling the visibility requirement for faces. A number of model examples
are given; in particular, the algorithm is applied to the interpretation of the Necker cube.
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INTRODUCTION

In S.N. Chernikov and his pupils’ papers, a universal approach to the investigation of systems
of linear inequalities was developed. The approach included the method of boundary solutions, the
method of fundamental convolution, and other basic methods, which are applicable not only to
feasible but also to infeasible systems of linear inequalities. Since the techniques from the theory
of linear inequalities were widely used in the simulation of all kinds of systems, these methods were
applied in various areas of research. As will be shown below, one of such new application domains
is the analysis of flat images of three-dimensional objects.

The issues of automatic image processing have recently become especially important. The prob-
lems of developing applied intellectual and robotic systems and related problems of understanding
the mechanisms of human vision, as well as the problem of image interpretation in computer
tomography, initiated the growth of investigations in the area of image processing, which produced
important results in the last ten years [1]. In particular, there was a significant progress in the
development of solution methods for problems of recovering three-dimensional objects from two-
dimensional digital images. Here, we apply the method of maximal feasible subsystems (MFSs) for
recovering the three-dimensional structure of a polyhedron from its known orthogonal projections.

The classical statement of this problem assumes the presence of several aspects of the same
object, which makes it possible to develop algorithms based on well-tested projective methods (see
review [1]) such as for example, the algorithm of recovery from a stereo pair (the standard and
wide-base stereo). However, at present, researchers become more interested in the recovery of
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Fig. 1. The Necker cube and its possible spatial interpretations.

three-dimensional scenes from one image [2, 3]. In this connection, let us mention the Make3D
project of Cornell University [4], which was started at Stanford University. The aim of the
project is to solve the problem of recovering a three-dimensional model of a scene from only one
photograph; this problem has not yet become typical. The project has shown that a considerable
amount of information is contained in the so-called monocular cues of an image, which often were
ignored before. In the understanding of the mechanisms of forming visible patterns, it is especially
interesting to analyze ambiguous images, which admit two or more interpretations (the so-called
transformable or reversible images).

Here, we consider a variant of this problem consisting in the interpretation of flat projections
of three-dimensional objects, which are transparent polyhedra given by their skeletons. This
problem is important not only for applications but also from the point of view of understanding the
mechanisms of image perception and interpretation by the human brain. It is especially interesting
to consider the human perception of so-called dual and contradictory images; this problem has been
heavily studied in recent years by philosophers, psychologists, and mathematicians [5].

One of the simplest and most studied images of this kind is the Necker cube. This is an outline
image corresponding to a parallel projection of vertices and edges of a cube to a plane. This image
and its two possible space interpretations are given in Fig. 1.

If this image is observed long enough, it seems to ‘reverse’ spontaneously: one three-dimensional
projections is replaced by another. Apparently, the two interpretations have equal rights in this
case, and the brain ‘tries’ each of these conjectures in turns, having no grounds to finally adopt
any of them. This happens due to the complete absence of contextual information, which usually
helps to make the decision in the recognition of visual images (since there is no perspective, the
faces have equal size). Other known examples of similar type are the outline of a half-open book
(Mach’s figure) and the Schröder staircase [6].

Patterns of perception of such ambiguous images have been analyzed in detail, in particular,
by Caglioti [7], who showed that these patterns are in many respect similar to self-organization
phenomena in dissipative structures beyond an unstable critical state. The peculiarity of these pro-
cesses is the dynamic alternation (inversion) of two stationary states. The Necker cube represents
the class of ‘wireframe models’ [8], which contain only vertices and edges of an object.

The aim of this paper is to demonstrate a new approach to solving problems of three-dimensional
interpretation of flat images based on the search for maximal (with respect to inclusion) feasible
subsystems of a certain infeasible system of linear inequalities. The class of three-dimensional
objects under consideration is the class of convex polyhedra, and the inequalities of the mentioned
infeasible system of constraints correspond to the visibility requirement for the faces of a polyhedron.

Since any real (plain) image can be approximated by an image consisting of points only, we
understand an image as a nonempty set of points on a plane as in [1].
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1. PROBLEM STATEMENT

Since the proposed methods use mathematical techniques from the theory of infeasible systems
of inequalities [9–13] and are not restricted to the case of three-dimensional scenes, we give a general
statement of the problem [14,15].

Assume that L1 and L2 are real linear spaces, L = L1 ×L2 is their Cartesian product, and the
projection P of a convex polyhedron Q ⊂ L to the subspace L1 is known:

P =
k⋃

i=1

M i
P = πL1

k⋃

i=1

M i
Q.

Here, πL1 is the operator of projection to L1, M i
Q (i = 1, . . . , k) is the set of faces of the original

polyhedron of dimension i − 1, and M i
P is the set of their projections. Thus, M = M1

P is the set
of point projections of vertices of the polyhedron, M2

P is the set of projections of edges, and so on.
In what follows, we assume that the set M is ordered. It is required to reconstruct Q in the form

Q = {q = [p, yp] ∈ L : p ∈ P},

where p ∈ L1, yp ∈ L2, and y = [yp ∈ L2 : p ∈ P ] is the required vector.
The proposed approach consists in the following. Let qi = [pi, yi] (i = 1, . . . , t) be vertices of Q

that define its face q1q2 . . . qt. Assume that a predicate V is defined in some way on the set of
tuples [q1q2 . . . qt] (in accordance with projections). A face q1q2 . . . qt = co{q1, q2, . . . , qt}, which
corresponds to the tuple [q1q2 . . . qt], is called visible if V (q1q2 . . . qt) = 1. Then, the collections of
visible faces of Q correspond to MFSs of the system

V (q1q2 . . . qt) = 1 (∀ p1p2 . . . pt ⊂ P ).

Let us consider in detail the problem of recovering a three-dimensional polyhedron from its
flat projection. Suppose that there is a three-dimensional polyhedron Q defined by the sets of
its vertices MQ, edges M2

Q, and faces M3
Q. Let the projection P of this polyhedron to a plane

given by its normal vector �n be known. It is required to recover the original polyhedron from the
projection up to some equivalence relation, which is defined below. The recovered polyhedron will
be called an interpretation of the projection. The same terminology will be used for the constituent
parts: vertices, edges, and faces. Let the projections of vertices, edges, and faces of the original
polyhedron Q form the sets MP , M2

P , and M3
P , respectively.

Let us introduce a rectangular coordinate system x1, x2 on the projection plane. The third
coordinate y will be directed along the vector �n. Thus, each vertex q = (x1, x2, y) of the poly-
hedron Q corresponds to some point p = (x1, x2) of the figure P . We introduce an equivalence
relation on the set of inverse images of P and assume the polyhedron recovery problem to be solved
if representatives of all equivalence classes are found.

Introduce on the set of faces M3
Q of Q the following order relation.

Definition 1. A face Γ1 precedes a face Γ2 if there exists a point x = (x1, x2) that belongs to
the interior of the intersection γ1∩γ2 of the projections γ1 and γ2 of these faces and has the inverse
images z1 = (x1, x2, y1) and z2 = (x1, x2, y2) on the faces Γ1 and Γ2, respectively, and y1 < y2.

Since the choice of the point x in this definition is ambiguous, it is necessary to show that
the definition is correct, i.e., that it is independent of the choice of this point. Assume that the
following conditions hold:
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(A1) Q is a convex polyhedron,
(A2) Q is a bounded polyhedron,
(A3) Q is a solid polyhedron.

Lemma 1. Let x = (x1, x2) and x′ = (x′
1, x

′
2) be any two points from the interior of the

intersection γ1 ∩ γ2 of the projections γ1 and γ2 of faces Γ1 and Γ2, respectively, with inverse
images z1 = (x1, x2, y1), z′1 = (x′

1, x
′
2, y

′
1) and z2 = (x1, x2, y2), z′2 = (x′

1, x
′
2, y

′
2) on the faces Γ1

and Γ2, respectively. Then, the inequalities y1 < y2 and y′1 < y′2 hold or do not hold simultaneously.

Proof. The proof is by contradiction. Assume that there exists a pair of points x = (x1, x2)
and x′ = (x′

1, x
′
2) that satisfy the condition of the lemma. Assume, by contradiction, that y1 < y2

and y′1 > y′2. Consider the intervals [z1, z
′
1] and [z2, z

′
2]. Since x and x′ are interior points of the

projections γ1 and γ2 of the faces Γ1 and Γ2, respectively, it follows that the points z1, z
′
1, z2, z

′
2

are interior points of their faces. Since the points z1, z2 and z′1, z
′
2 lie on parallel straight lines, the

specified intervals lie in the plane defined by these straight lines, and all their points are interior
points of the faces Γ1 and Γ2, respectively. Then, however, these intervals intersect at some point z̃,
which belongs to the faces Γ1 and Γ2 simultaneously. Consequently, z̃ ∈ Γ1 ∩ Γ2 and Γ1 ∩ Γ2 �= ∅.
Thus, the faces Γ1 and Γ2 intersect, and z̃ is an interior point of each of the faces, which is
impossible. The contradiction proves the lemma.

Lemma 2. Let conditions (A1)–(A3) be satisfied. Then, for any face Γ of the polyhedron Q,
there exists exactly one other face comparable with Γ with respect to the introduced order relation.

Proof. Let x = (x1, x2) be some interior point of the projection γ of some face Γ of the
polyhedron Q, and let z = (x1, x2, y) ∈ Γ. Consider the straight line l passing through the point x

parallel to the Oy axis (i.e., orthogonal to the plane of the projection P ). Let us show that this
straight line intersects at least one more face of Q.

By condition (A3), there exists an interior point z1 of the polyhedron Q not lying on the
face Γ. Let z′1 be the point of intersection of the face Γ with the perpendicular drawn from z1 to
the projection plane. By condition (A1), the interval [z1, z] completely consists of points of the
polyhedron Q; hence, we can assume that z′1 is an interior point of Γ. Let z2 be a point on the
extension of the interval [z′1, z] that also belongs (together with the point z) to the face Γ and, in
addition, lies inside the interval [z′1, z2]. Then, the interval [z1, z2] intersects the straight line l at
some point z3 ∈ Q. Thus, there is one more point z3 �= z of the polyhedron Q on the straight line l;
consequently, the interval [z, z3] completely consists of points of the polyhedron Q. As follows from
condition (A2), the ray that continues the interval [z, z3] contains a point not belonging to Q and,
consequently, a point z′ ∈ l lying on the boundary of Q, i.e., on some of its faces Γ′.

Thus, it is shown that the straight line l intersects Q at least at two points z and z′. Let us
show that there are no other boundary points of Q on this line.

Assume the existence of a point z0 such that z0 �= z, z0 �= z′, and z0 ∈ l ∩ Q. Let these points
lie on l, for example, in the order z, z′, z0. Then, the point z′, on the one hand, is a boundary point
of Q because z′ ∈ Γ′ and, on the other hand, by condition (A1), is an interior point of Q because
z′ ∈ (z, z0). This contradiction shows that the line l intersects exactly two faces of Q. According
to the above definition, this means that there are exactly two comparable faces Γ and Γ′.

The lemma is proved.

In accordance with the natural interpretation, elements of M3
Q that are minimal with respect to

the introduced order will be called visible faces. Polyhedra in which faces with the same projection
are visible or invisible simultaneously will be called equivalent. Thus, the problem of interpreting
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a flat projection of a polyhedron can be refined as follows: reconstruct the original polyhedron up
to the collection of visible faces.

Note that this problem is equivalent to the problem of finding minimal (with respect to inclusion)
covers of the convex hull co MP of projections of vertices of Q by projections of its faces. This
circumstance, on the one hand, provides a possible approach to the solution of the original problem
and, on the other hand, can serve as a solution criterion for a found collection of faces.

Remark. A collection of visible faces, evidently, depends on the viewing direction, i.e., on the
direction of the Oy axis. If the direction of this axis is changed for the opposite, then, obviously,
maximal faces become minimal and, vice versa, minimal faces become maximal.

Let us formulate the main result.
Theorem 1. The problem of interpreting a flat projection of a polyhedron under conditions

(A1)–(A3) has exactly two solutions: the first is the collection of minimal faces of Q, and the second
is the collection of its maximal faces.

Proof. The proof of this theorem follows from the proved lemmas and from the remark.

2. INTERPRETATION OF VERTICES, EDGES, AND FACES

Note that edges belonging to the boundary of the projection coMP of the polyhedron are visible
in all interpretations. Further, the visibility of faces of larger dimension (edges and faces in the
three-dimensional case) implies the visibility of their subsets that are faces of smaller dimension
(vertices and edges, respectively).

Before solving the problem, it is useful to verify the fulfillment of some simple conditions that
follow from our requirements: the Euler relation |MP | − |M2

P | + |M3
P | = 2 and the condition that

there are at least three edges emanating from each vertex.
Let us pass to the interpretation of vertices. Let p ∈ MP . If this point lies on the boundary

of the projection of the polyhedron, then this vertex is visible in any interpretation. Now, let the
point p lie inside the projection of the polyhedron. Then, there exists a face pi1pi2 . . . pik containing
this point. We find the expansion

p =
k∑

j=1

αjpij , αj ≥ 0 (∀ j ∈ 1, k),
k∑

j=1

αj = 1.

If pij = (xij
1 , x

ij
2 ), qij = (xij

1 , x
ij
2 , yj), p = (x1, x2), and q = (x1, x2, y), then the vertex q is considered

to be visible if y <
∑k

j=1 αjyj .
Let us now consider the interpretation of edges. As noted earlier, the visibility of the vertices

of an edge (if at least one of them does not belong to the boundary of coMp) is sufficient for
the visibility of the edge. However, the method of interpretation of projections based on the
interpretation of vertices does not guarantee that the above conditions hold for the obtained
polyhedron; the class of interpretations is too wide in this case and contains various ‘elaborate’
figures. Therefore, we will use the following refinement of the method of interpretation of vertices.

Consider an edge p1p2 ∈ M2
P . Let p1 = (x1

1, x
1
2), p2 = (x2

1, x
2
2), q1 = (x1

1, x
1
2, y1), q2 = (x2

1, x
2
2, y2),

pi
j = (xi,j

1 , xi,j
2 ), and qi

j = (xi,j
1 , xi,j

2 , yij) (i ∈ 1, r, j ∈ 1, ki). Let us find all the faces Γi = pi
1 . . . pi

ki

(i ∈ 1, r) that intersect the edge p1p2. We construct the expansions

p1 =
ki∑

s=1

αi
1sp

i
s, p2 =

ki∑

s=1

αi
2sp

i
s,

ki∑

s=1

αi
ts = 1 (t = 1, 2).
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Further, we consider the edge q1q2 to be visible if and only if the following inequalities are satisfied:

y1 <

ki∑

s=1

αi
1syis, y2 <

ki∑

s=1

αi
2syis (i ∈ 1, r).

We obtain similar systems for all edges from M2
P and combine them:

A1y < 0,
· · ·

Any < 0.

}
(1)

Here, n = |M2
P | and y is the vector composed of the found values y1, y2, yis (its dimension is |MP |).

We should also take into account the absence of ‘bends’ of faces with more than three vertices.
This gives a (possibly, empty) system of equalities of the form By = 0, which allows us to lower
the dimension of system (1). As a result, we obtain the system of inequalities

Ã1ỹ < 0,
· · ·

Ãnỹ < 0,

}
(2)

where the vector ỹ contains only a part of variables of the vector y.
Further, we find all MFSs of system (2) and, among them, select subsystems that are sufficient

for the interpretation of edges, i.e., are composed of some matrices Ãi only. Thus, this algorithm
completely solves the formulated interpretation problem.

Consider some model examples.

3. EXAMPLES OF THE OPERATION OF THE ALGORITHM

Example 1. Consider the following projection (Fig. 2): MP = {p1, p2, p3, p4}, p1 = (−1, 0),
p2 = (0,−1), p3 = (1, 2), p4 = (2, 0), and M1

P = {p1p2, p1p3, p1p4, p2p3, p2p4, p3p4}.
The edges q1q4 and q2q3 can be invisible.
(1) The edge q1q4. If q1 ‘screened’ by the extension of the face q2q3q4, then

(a1) 5y1 < 6y2 + 3y3 − 4y.
If q4 ‘screened’ by the extension of the face q1q2q3, then

(a2) 4y4 < −5y1 + 6y2 + 3y3.
(2) The edge q2q3. If q2 is ‘screened’ by the extension of the face q1q3q4, then

(a3) 6y2 < 5y1 − 3y3 + 4y4.
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Fig. 2. Fig. 3. Fig. 4.
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Writing h(y) = 5y1 − 6y2 − 3y3 + 4y4, we obtain the system of inequalities

(a1) h(y) < 0,
(a2) h(y) < 0,
(a3) −h(y) < 0,
(a4) −h(y) < 0,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

which has two MFSs. The first MFS, which contains the first two inequalities, corresponds to the
visibility of the edge q2q3 (Fig. 3), whereas the second MFS, which contains the last two inequalities,
corresponds to the visibility of the edge q1q4 (Fig. 4).

Example 2. Let MP = {p1, p2, p3, p4, p5}, p1 = (−3, 0), p2 = (−1,−1), p3 = (0, 4), p4 = (1, 1),
p5 = (2, 0), and M1

P = {p1p2, p1p3, p1p4, p2p3, p2p5, p3p4, p3p5, p4p5} (see Fig. 5).
The edges q1q4, q2q3, q3q4, and q4q5 can be invisible.
(1) The edge q1q4:

(b1) q1 ∈ q2q3q5 ⇒ 14y1 < 20y2 + 5y3 − 11y5,
(b2) q4 ∈ q2q3q5 ⇒ 7y4 < y2 + 2y3 + 4y5,

(b3) q4 ∈ q1q2q3 ⇒ 11y4 < −8y1 + 13y2 + 6y3.
(2) The edge q2q3:

(b4) q2 ∈ q1q3q4 ⇒ 13y2 < 8y1 − 6y3 + 11y4,
(b5) q3 ∈ q1q2q4 ⇒ 6y3 < 8y1 − 13y2 + 11y4.

(3) The edge q3q4:
(b6) q4 ∈ q2q3q5 ⇒ 7y4 < y2 + 2y3 + 4y5.

(4) The edge q4q5:
(b7) q4 ∈ q2q3q5 ⇒ 7y4 < y2 + 2y3 + 4y5.

The equation corresponding to the requirement q5 ∈ q1q2q4 has the form
(b8) 4y1 − 5y2 − 5y4 + 6y5 = 0.

Using this equation and setting h(y) = 14y1−20y2−5y3+11y5, we get the system of inequalities

(b1) h(y) < 0,
(b2) h(y) < 0,
(b3) h(y) < 0,
(b4) −h(y) < 0,
(b5) −h(y) < 0,
(b6) h(y) < 0,
(b7) h(y) < 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This system has two MFSs: the first of them contains the fourth and fifth inequalities, whereas the
second contains the remaining inequalities. Therefore, we obtain two interpretations: in the first,
the visible edges are q1q4, q3q4, and q4q5 (Fig. 6); in the second, the visible edge is q2q3 (Fig. 7).

Example 3. The Necker cube [7] (Fig. 8).
Let MP = {p1, p2, . . . , p8}, where p1 = (0, 0), p2 = (0, 1), p3 = (0.25, 0.5), p4 = (0.25, 1.5),

p5 = (1, 0), p6 = (1, 1), p7 = (1.25, 0.5), and p8 = (1.25, 1.5). The set of edges is M2
P =

{p1p2, p1p3, p1p5, p2p4, p2p6, p3p4, p3p7, p4p8, p5p6, p5p7, p6p8, p7p8}, where |M2
P | = 12 and each

point pi = (xi
1, x

i
2) corresponds to a vertex qi = (xi

1, x
i
2, yi) of a polyhedron in the three-dimensional

space. The edges p1p2, p2p4, p4p8, p7p8, p5p7, and p1p5 are always visible (in any interpretation).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 283 Suppl. 1 2013



INTERPRETATION OF CONTRADICTORY IMAGES S107

�1

�1

2

3

1

2�� �� 0 1

p
3

p5

p4

p
2

p1

p
3

p4

p5

p
2

p
1

�� ��

��

�� � � �

�

�

�

p
3

p
4

p
5

p
1

p
2

� ��

�

�

�

��

��

����

Fig. 5. Fig. 6. Fig. 7.
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Let us write the system of equations with respect to the vector y = [y1, y2, . . . , y8] that follows
from the absence of ‘bends’ of faces:

q1 ∈ q2q5q6 ⇒ y1 − y2 − y5 + y6 = 0,
q5 ∈ q6q7q8 ⇒ y5 − y6 − y7 + y8 = 0,
q3 ∈ q4q7q8 ⇒ y3 − y4 − y7 + y8 = 0,
q1 ∈ q2q3q4 ⇒ y1 − y2 − y3 + y4 = 0,
q1 ∈ q3q5q7 ⇒ y1 − y3 − y5 + y7 = 0,
q2 ∈ q4q7q8 ⇒ y3 − y4 − y7 + y8 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

This system is equivalent to the following system, which expresses the variables y4, y6, y7, y8 in
terms of y1, y2, y3, y5:

y4 = y1 + y2 + y3,

y6 = −y1 + y2 + y5,

y7 = −y1 + y3 + y5,

y8 = −2y1 + y2 + y3 + y5.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Let us construct a system of inequalities that describes the visibility of the corresponding edges of
the polyhedron. The edges p1p3, p2p6, p3p4, p3p7, p5p6, and p6p8 lie inside the polyhedron co MP .
Consequently, only the edges of the original polyhedron corresponding to them can be ‘screened’
by other faces and be invisible in some interpretations.

(1) The edge q1q3 can be ‘screened’ only by the face q1q2q6q5. Therefore, there is only one
inequality that follows from the relation p3 = 0.25p1 + 0.5p2 + 0.25p5:
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(c1) y3 < 0.25y1 + 0.5y2 + 0.25y5 = 0.
(2) The edge q2q6 can be ‘screened’ by the faces q1q2q4q3 and q3q4q8q7. In the first case,

since the vertex q2 is always visible, it is sufficient to write the inequality that follows from the
impossibility of intersection of edges and faces. More exactly, the point q6 must be ‘in front of’ the
plane that extends the face q1q2q4q3. From the relation p6 = −2p1 − p2 + 4p3, we obtain

(c2) y6 < −2y1 − y2 + 4y3.
In the second case, when we consider the face q3q4q8q7, the relations p2 = 1.25p4 + 0.5p7 − 0.75p8

and p6 = 0.25p4 + 0.5p7 + 0.25p8 similarly yield two more inequalities:
(c3) y2 < 1.25y4 + 0.5y7 − 0.75y8,
(c4) y6 < 0.25y4 + 0.5y7 + 0.25y8.

In what follows, we will briefly write only the edges, faces, and relations under consideration as
well as the corresponding inequalities.

(3) The edge q3q4. The faces q1q2q6q5 and q2q4q8q6. The relations p3 = 0.25p1 +0.5p2 +0.25p5,
p4 = −0.75p1 + 1.5p2 + 0.25p5, and p3 = 1.5p2 − p4 + 0.5p6. The inequalities

(c5) (c1),
(c6) y4 < −0.75y1 + 1.5y2 + 0.25y5,
(c7) y3 < 1.5y2 − y4 + 0.5y6.

(4) The edge q3q7. The faces q1q2q6q5 and q5q6q8q7. The relations p3 = 0.25p1 +0.5p2 +0.25p5,
p3 = 2p5 + 2p6 − 3p7, and p7 = −0.75p1 + 0.5p2 + 1.25p5. The inequalities

(c8) (c1),
(c9) y3 < 2y5 + 2y6 − 3y7,
(c10) y7 < −0.75y1 + 0.5y2 + 1.25y5.

(5) The edge q5q6. The faces q1q3q7q5 and q3q4q8q7. The relations p5 = 0.25p4 +1.5p7 −0.75p8,
p6 = 0.25p4 + 0.5p7 + 0.25p8, and p6 = −1.5p1 + 2p3 + 0.5p5. The inequalities

(c11) y5 < 0.25y4 + 1.5y7 − 0.75y8,
(c12) (c4),
(c13) y6 < −1.5y1 + 2y3 + 0.5y5.

(6) The edge q6q8. The faces q3q4q8q7. The relation p6 = 0.25p4+0.5p7+0.25p8. The inequality
(c14) (c4).

Thus, we have the following system of inequalities:

(c1) −y1 − 2y2 + 4y3 − y5 < 0,
(c2) 2y1 + y2 − 4y3 + y6 < 0,
(c3) 4y2 − 5y4 − 2y7 + 3y8 < 0,
(c4) −y4 + 4y6 − 2y7 − y8 < 0,
(c5) (c1),
(c6) 3y1 − 6y2 + 4y4 − y5 < 0,
(c7) −3y2 + 2y3 + 3y4 − y6 < 0,
(c8) (c1),
(c9) y3 − 2y5 − 2y6 + 3y7 < 0,

(c10) 3y1 − 2y2 − 5y5 + 4y7 < 0,
(c11) −y4 + 4y5 − 6y7 + 3y8 < 0,
(c12) (c4),
(c13) 3y1 − 4y3 − y5 + 2y6 < 0,
(c14) (c4).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 9. Fig. 10.

In view of the above equalities that express the unknowns y4, y6, y7, y8 in terms of the remaining
variables, this systems turns into the following system (here, h(y) = −y1 − 2y2 + 4y3 − y5):

(c1) h(y) < 0,
(c2) −h(y) < 0,
(c3) −h(y) < 0,
(c4) −h(y) < 0,
(c6) h(y) < 0,
(c7) h(y) < 0,
(c9) h(y) < 0,

(c10) h(y) < 0,
(c11) −h(y) < 0,
(c13) −h(y) < 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This system has only two MFSs: (c1), (c6), (c7), (c9), (c10) and (c2), (c3), (c4), (c11), (c13). Let us
list inequalities whose validity is necessary for the visibility of the corresponding edges: (c1) for the
edge q1q3; (c1), (c9), and (c10) for the edge q3q7; (c2), (c3), and (c4) for the edge q2q6; (c4), (c11),
and (c13) for the edge q5q6; (c1), (c6), and (c7) for the edge q3q4; and (c4) for the edge q6q8. Thus,
the first MFS corresponds to the interpretation in which the edges q1q3, q3q4, and q3q7 are visible
(Fig. 9), whereas the second MFS corresponds to the interpretation in which the edges q2q6, q5q6,
and q6q8 are visible (Fig. 10).

Thus, the visible faces in the first interpretation are q1q2q4q3, q3q4q8q7, and q1q3q7q5, and the
visible faces in the second interpretation are q1q2q6q5, q5q6q8q7, and q2q4q8q6.

4. CONCLUSIONS

In our opinion, the proposed approach to the recovery of images holds much promise but
needs further theoretical investigation. Its advantages are, first of all, the computational simplicity
(for two interpretations, it is sufficient to calculate only one coefficient of inequalities) and the
possibility of extension to more general problems of image interpretation. Note that the approach
is not restricted to convex polyhedra; this case was taken for simplicity.

However, we should note that the technique considered in this paper does not take into account
the metric properties of a three-dimensional object, which are important for practical problems.
Therefore, it will be necessary to further develop the proposed approach in combination with the
classical projective approach.
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