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INTRODUCTION

Metallic tantalum is widely used due to a unique set
of its physicochemical and technical properties
[http://ru.wikipedia.org]. Tantalum is one of the
refractory (Tm ≈ 3290 K) and corrosion�resistant met�
als; as a result, it is applied to produce the parts of the
equipment intended for operation at very high tem�
peratures and in aggressive media. Tantalum is widely
employed in ferrous metallurgy as an alloying element
for the manufacture of special steels and alloys. More�
over, it is characterized by high biological compatibil�
ity with living tissues; therefore, it is widely used in
medicine as a pin material.

The physical properties of tantalum are also
unique, which provokes constant scientific interest in
it as a convenient model object for testing various the�
ories of formation of the thermophysical properties of
condensed substances (see, e.g., [1–8]). The modern
approaches to the calculation of thermodynamic
properties include the ab initio calculations that are
based on various concepts of the electronic structure
of a metal and its “deformation” as a function of tem�
perature and pressure. Computer programs for such
calculations are well developed. Unfortunately, good
agreement between the results of such calculations and
experimental data was only obtained in a few cases for
some properties in limited temperature and pressure
ranges. In particular, it is difficult to calculate the heat
capacity of tantalum C(T) and the derivative proper�
ties, namely, Debye temperature θD(T) and electronic
heat capacity coefficient ζ [9–20]. However, it is these
properties that substantially determine the change in
the thermodynamic properties of tantalum at interme�
diate and high temperatures.

According to various data, the low�temperature

limit of the Debye temperature  of tantalum
changes from 217 K [21] to 250 K [15]; moreover,
there is no generally accepted opinion regarding both
the value and character of the θD(T) dependence. For
example, Debye temperature θD(T) found from calo�

rimetric measurements first decreases from  = 236
to 226 K at T = 45 K and then rapidly increases to
312 K at T = 273 K [12], whereas other authors (see,
e.g., [7, 16]) point to a smooth change in function

θD(T) from low�temperature value  to 220–230 K
at room temperature. According to various authors, the
electronic heat capacity coefficient of tantalum
ζ (mJ mol–1 K–2) falls in the range from 3.33 ± 0.05 [20]
to 7.83 [19]; in most works, its values lie in the range
5 ≤ ζ ≤ 7. In other words, there is no generally accepted
value of ζ.

The significant uncertainty in the values of the
Debye temperature and the electronic heat capacity
coefficient indicates that a number of the basic prop�
erties of tantalum are poorly understood. In turn, this
results in certain difficulties for the development of
models for the thermodynamic properties of tantalum
that use parameters θD and ζ, such as the self�consistent
thermodynamic model (SCTDM) of solids [22–25].
Therefore, the necessity of refinement of some ther�
modynamic parameters of tantalum is obvious, and
this is the purpose of this work.

The study of the heat capacity of tantalum at low
temperatures is of particular scientific interest due to
the following reasons. First, tantalum is a supercon�
ductor with a rather high superconducting transition
temperature Tsc = 4.39 K; from this standpoint, it is a
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convenient model object (see, e.g., [17, 19, 20]). Tan�
talum is considered to be a simple superconductor,
and a change in it thermodynamic properties is well
described by the Bardeen–Cooper–Schrieffer (BCS)
theory [26]. Nevertheless, there exist modern works
disputing with this concept (see, e.g., [20]). Therefore,
this problem requires an additional investigation.

Second, low�temperature data on the heat capacity
of a metal make it possible to separate the contribu�
tions to the total heat capacity that are caused by the
crystal lattice (Debye contribution), which is propor�
tional to T 3, and by the conduction electron sub�
system (electron contribution in the normal state),
which is proportional to T,

(1)

In practice, these contributions are separated by
the dependence of C/T on T 2 and by a linear interpo�
lation of this dependence by the least squares method
(linear regression),

(2)

In Eqs. (1) and (2), R = 8.31441 J mol–1 K–1 is the

gas constant and  is the low�temperature limit of
the Debye temperature. It should be noted that the
described simple scheme is idealized and that it is
complicated for real metals, in particular, because of
the fact that the phonon spectra of substances are
much more complex than in the Debye model. This
behavior can be represented as a temperature depen�
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dence of Debye temperature (T). For some metals,
this dependence is rather strong, which is most pro�
nounced at low temperatures. In turn, this finding
leads to a nonlinear C/T(T 2) dependence and to the
problem of a correct choice of the temperature range
ΔT in which the C/T(T 2) dependence can be
described by a linear trend. Even small errors in choos�
ing range ΔT can result in noticeable errors for the lin�
ear regression parameters. In turn, these errors can be
decisive for, e.g., estimating the electronic heat capac�
ity of a solid metal in a wide temperature range.

RESULTS AND DISCUSSION

Figure 1 shows the low�temperature C/T(T 2)
dependence for tantalum. Allowing for the analysis
made above, we analyze the C/T(T 2) dependence for

the ΔT1 range Tsc < T <  where  ≈ 20 K.
With allowance for the standard errors, the linear trend
(linear regression) coefficients found by the least
squares method are ζ = 4.08 ± 0.22 mJ mol–1 K–2 and

12π4R/5  = 172.4 ± 1.4 μJ mol–1 K–5. From the last
coefficient, the low�temperature limit of the Debye

temperature for tantalum can be estimated at  =
224.25 ± 0.62 K. The high linear correlation coeffi�
cient squared (R2 = 0.9963) indicates good quality of
the linear regression of the C/T(T 2) dependence for
tantalum.

To perform a crosscheck of the reliability of our
results, we constructed a linear regression of the
C/T(T 2) dependence in the temperature range ΔT2

1 < T < 20 K. The electronic heat capacity of tantalum
at T < Tsc was taken for the normal state of the super�
conductor; that is, it was measured in a magnetic field
higher than the critical field. Although this is usual prac�
tice, the possible dependence of the heat capacity of the
electron subsystem on the magnetic field should also be
taken into account. The following parameters were cal�
culated for range ΔT2: ζ = 4.54 ± 0.20 mJ mol–1 K–2,

12π4R/5  = 170.2 ± 1.4 μJ mol–1 K–5,  =
225.21 ± 0.60 K. The linear correlation coefficient
squared is R2 = 0.9958. The agreement for both sets of
the results is satisfactory for all parameters except for
electronic heat capacity coefficient ζ: the relative dif�
ference in its values reaches 11%, whereas the differ�

ence in the values of  is slightly larger than 0.4%.
The significant differences in the values of ζ again
indicates the importance of careful justification of cal�
culation temperature range ΔT. The detected differ�
ences can be explained by the dependence of the heat
capacity of the electron subsystem in the supercon�
ductor on the magnetic field.
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Fig. 1. C/T vs. T 2 for tantalum at low temperatures:
(points) experimental (reference) calorimetric data
[10, 13–15, 18] and (solid line) linear trend. (inset) C/T vs.
T 2 for tantalum at below 12 K. The arrow indicates the
superconducting transition temperature.
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Figure 2 shows the heat capacity of tantalum over a
wide temperature range (0 < T ≤ 300 K). The empirical
data for the C(T) dependence of various authors
(Fig. 2, points) agree well with each other and with the
heat capacity calculated in terms of SCTDM for solids
[22–25]. The dotted line shows the calculated
phonon (lattice) part of heat capacity Cp(T), and the
solid line illustrates total heat capacity C(T) =
Cp(T) + ζT. Without analyzing the SCTDM calcula�
tion results (which requires a separate investigation),
we note that the electronic heat capacity coefficient
considered in the SCTDM model as a free parameter
is ζ = 4.00 mJ mol–1 K–2, which agrees with the value
of ζ obtained from an analysis of the low�temperature
heat capacity of tantalum in temperature range ΔT1

accurate to 2%.

The temperature dependence of the Debye tem�
perature of tantalum calculated with the SCTDM
model is weak, which is in conflict with the calorimet�

ric data in [12]:  decreases monotonically from

 = 236.0 K at T → 0 to 235.3 K at T = 300 K. The

calculated value of θD agrees with  obtained from
an analysis of the low�temperature heat capacity of
tantalum accurate to ~5%. In other words, the heat
capacity of metallic tantalum well follows a simple
thermodynamic model with constant parameters ζ

and  over a wide temperature range (up to 300 K or
above; the discrepancy between the experimental and
calculated values of C(T) becomes significant above
~700 K).
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The electronic heat capacity of tantalum in the
normal and superconducting phases can be separated
as the difference between the total heat capacity and its
phonon part,

(3)

Figure 3 shows the separated electronic part of the
heat capacity of tantalum. The electronic heat capac�
ity in the normal phase is linear in temperature and is
satisfactorily described by the Sommerfeld model,
Ce(T > Tsc) = ζT. In the superconducting state, the
electronic heat capacity in terms of the BCS theory is
described by an exponential function of temperature
[17, 26],

(4)

where A is a constant dependent on the properties of
the superconductor, kB is the Boltzmann constant, and
Δ(0) is the energy gap of the superconductor at T → 0.
The BCS model is generally accepted, at least for sim�
ple superconductors, including tantalum. However, as
noted above, some authors state that the heat capacity
of tantalum in the superconducting state follows a
simple T 2 power law (see, e.g., [20]),

(5)

where B0 and B2 are empirical coefficients having no
clear physical meaning. To check the adequacy of the
statements expressed by Eqs. (4) and (5) is one of the
purposes of this work.

The correspondence of the detected electronic
heat capacity of superconducting tantalum to the BCS
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Fig. 2. Temperature dependence of the heat capacity C(T)
of tantalum at below 300 K: (lines) self�consistent calcula�
tion ((solid line) total heat capacity, (dotted line) lattice
part of the heat capacity) and (points) experimental (refer�
ence) data [10, 13–15, 18]. The arrow indicates the super�
conducting transition temperature in the heat capacity
curve C(T) of tantalum below 12 K.
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Fig. 3. Temperature dependence of the electronic heat
capacity Ce(T) of tantalum at low temperatures: (points)
experimental (reference) data [10, 13, 15, 18], (lines) cal�
culation results ((solid line) electronic heat capacity in the
normal (Sommerfeld model) and superconducting (BCS
model) states, (dashed line) quadratic interpolation of the
heat capacity in the superconducting state, (dotted line)
extrapolation of the normal electronic heat capacity to the
superconducting state). The arrow indicates the supercon�
ducting transition temperature.
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model can be tested by the least squares method, i.e.,
by analyzing the dependence of lnCe on reciprocal
temperature 1/T. This function should be linear,

(6)

Equation (6) for the logarithm of the electronic
heat capacity of tantalum separated from the experi�
mental data in [10, 13, 15] using Eq. (3) satisfactorily
follows a linear trend (R2 = 0.9961), which supports
the correctness of the conclusions made using the BCS
theory (Fig. 4). The energy gap of tantalum in the
superconducting state that was obtained from a linear
regression is Δ(0) = 3.09 ± 0.04 (expressed in energy
units kBTsc, as is common). This value agrees rather
well with the values of Δ(0) calculated by other meth�
ods, namely, 3.0 [27] (electron absorption in the far
infrared region), 3.4 ± 0.2 [28] (ultrasonic measure�
ments), 3.62 ± 0.06 [29] (ultrasound absorption in a
high�purity tantalum single crystal), 3.55 ± 0.02 [30]
(surface impedance measurements in the microwave
region), and 3.5 [26] (BCS theory). The deviations
from the BCS values become noticeable only at the
lowest temperatures in the vicinity of the superconduct�
ing transition temperature Tsc = 4.39 K (Figs. 3, 4).

Figure 5 shows the dependence of the “experimen�
tal” electronic heat capacity of tantalum [10, 13, 15]
on temperature squared given in [20]. This depen�
dence also satisfactorily follows a linear trend (R2 =
0.9917) but is slightly worse than in the case of the
BCS theory. The authors of [20] used the data from
only one work ([13]) to determine the coefficients in
Eq. (5) and found that a function quadratic in T very
well describes the empirical Ce(T 2) data (R2 = 0.9995)
[13]. Using the least squares method, we found the

Celn A Δ 0( )
2kB

��������� 1
T
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parameters in the linear Ce(T 2) regression for tantalum
in the superconducting phase, B0 = –0.00415 ± 0.0007
and B2 = 0.00344 ± 0.00005. As noted above, coeffi�
cients B0 and B2 in Eq. (5) have no clear physical
meaning, in contrast to the parameters in the BCS
theory. Moreover, the calculated Ce(T) dependence
with coefficients B0 and B2 becomes negative at tem�
peratures T < 1.1 K, which obviously has no physical
meaning. As noted in [20], this means that the behav�
ior of the heat capacity of tantalum described by
Eq. (5) at the lowest temperatures is wrong and should
be changed into a more adequate one.

Thus, it should be admitted that there are no rea�
sonable grounds to replace the electronic heat capac�
ity Ce(T) calculated by the BCS theory (see Eq. (4))
and quadratic in T by the Ce(T) dependence (see
Eq. (5)) proposed in [20]. In the case of tantalum, the
BCS theory is adequate. The idea [20] that quadratic
dependence (5) describes the experimental data better
than exponential dependence (4) using the BCS
model can be explained by the fact that the authors of
[20] took into account a single set of experimental data
[13], whereas statistical processing of the data from
works apart from [13] leads to the converse conclu�
sion. This conclusion emphasizes the importance of
statistical processing of the entire experimental infor�
mation, especially in the important cases of estimating
the adequacy of a certain physical theory.

CONCLUSIONS

(1) Using tantalum as an example, we applied a sta�
tistical thermodynamic approach to determine the
thermodynamic parameters in its superconducting
and normal states that are related to the heat capacity
of the metal (i.e, electronic heat capacity coefficient ζ,
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Fig. 4. Function lnCe(1/T) for tantalum in the supercon�
ducting phase: (points) experimental (reference) data
[10, 13, 15, 18] and (solid line) linear trend.
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Fig. 5. Function Ce(T 2) for tantalum in the superconduct�
ing phase: (points) experimental (reference) data [10, 13,
15, 18] and (solid line) linear trend.
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energy gap Δ(0)). Reliable tabulated values of some of
these parameters, e.g., ζ, were absent.

(2) It was shown that, in contrast to the calcula�
tions that take into account the results of only single
studies, a statistical approach makes it possible to ade�
quately estimate important thermodynamic parame�
ters and to quantitatively describe the thermodynamic
functions of metals over a wide temperature range.
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