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Abstract— In various distribution spaces, we study the Cauchy problem for the equation
u′(t) = Au(t)+BW(t), t ≥ 0, with a singular white noise W and an operator A generating various
regularized semigroups in a Hilbert space. Depending on the properties of the operator A,
we construct solutions generalized separately and jointly with respect to the time, random, and
“space” variables.

DOI: 10.1134/S0012266113040083

INTRODUCTION

Models of various evolution processes considered with regard for random perturbations lead to
the Cauchy problem for differential-operator equations with an inhomogeneity in the form of white
noise. Of them, fundamental is the Cauchy problem for the first-order equation with an operator A
that is the generator of a semigroup of the class C0,

X ′(t) = AX(t) + BW(t), t ∈ [0, τ), τ ≤ ∞, X(0) = ζ, (1)

which, owing to the irregularity of the white noise W, is reduced by some Wiener process to the
problem with an “antiderivative” of W; to this end, it is represented in integral form (e.g., see [1–4]).
Therefore, the investigation of problem (1) can be reduced to the analysis of a (not necessarily
equivalent) integral problem.

The present paper deals with the construction of generalized solutions of the stochastic Cauchy
problem (1), where A is the generator of some regularized semigroup in the Hilbert space H,
{W(t), t ≥ 0} is an H-valued generalized white noise process whose rigorous definition in various
distribution spaces will be given below, and B ∈ L(H,H).

Under the above-mentioned conditions, problem (1) is ill-posed for two causes. First, owing
to the properties of the operator A generating not a semigroup of the class C0 but only some
regularized semigroup, in particular, an integrated semigroup or an R-semigroup. For such A,
the operators of solution of the corresponding homogeneous problem U(t), t ∈ [0, τ), are not
bounded; therefore, instead of the family {U(t)} required for the solution of problem (1), one
should either construct some regularized family V = {V (t), t ∈ [0, τ)} or consider operators of
solution in spaces of distributions, distributions with respect to the variable t if V is an integrated
semigroup or distributions with respect to the “space” variable (defined by the operator A) if V
is an R-semigroup [5, pp. 16–25; 6, pp. 34–79]. Second, owing to the irregular behavior of the
white noise, in particular, the absence of continuity caused by the independence of the random
variables W(t1) = W(t1, ω) and W(t2) = W(t2, ω), ω ∈ Ω, for t1 �= t2. The presence of the noise
in the equation leads to two distinct approaches to the solution of the stochastic problem (1) :
(i) the solution of the “differential” problem (1) is replaced by the solution of the above-mentioned
integral problem with an “antiderivative” of the white noise, which is a Wiener process defined as
a generalization of Brownian motion; (ii) one solves problem (1) with the white noise W equal to
a generalized derivative of a Wiener process in some distribution space.
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In the present paper, the solution of the posed problem is related to the second approach, whose
important components are given by the construction of distribution spaces such that the definition
of white noise is possible and the construction of distribution spaces in which the operators of
solution of the homogeneous problem, which do not necessarily generate a semigroup of operators
of the class C0, are defined. The below-suggested idea of definition of a jointly generalized solution
permits one to construct distribution spaces in which both above-mentioned difficulties (the absence
of a semigroup of operators of the class C0 and the irregularity of the white noise) can be overcome.
The investigation of the above-posed general problem was started in [7–9], and the investigation
dealing with the construction of distributions with respect to several variables was initiated in [10].

In Section 1, we give necessary definitions from the theory of regularized semigroups, abstract
Wiener processes, abstract (Hilbert-valued) Schwartz distributions, and stochastic distributions.
In Section 2, we construct a solution generalized with respect to time and random variables for
problem (1) with generators of integrated semigroups and with an inhomogeneity in the form
of white noise. To construct such a solution, we combine the technique of abstract distribu-
tions [6, pp. 121–137; 11] providing the construction of semigroups-distributions and the technique
of stochastic distributions providing the construction of singular white noise [7, 12]. In Section 3, we
construct a solution of problem (1) with a white noise and with generators of R-semigroups, which
is generalized with respect to the random variable and the variable of the space H. The desired so-
lution is constructed with the use of stochastic distributions in combination with generalized Ivanov
functions [5, pp. 150–153]. Special attention is paid to problems with generators of semigroups with
singularities of order α at zero.

A solution generalized with respect to the time variable t, the random variable ω, and the space
variable is defined as a continuous mapping of the space of test functions depending on t, ω, and
the variable of the space H, respectively, into an appropriate space of transforms, which is defined
for each of solutions. All solutions constructed in Sections 2 and 3 are represented as two terms,
the first of which reflects the influence of initial conditions, and the other (a generalized stochastic
convolution) represents the influence of random perturbations.

1. REQUIRED DEFINITIONS: REGULARIZED SEMIGROUPS,
ABSTRACT WIENER PROCESSES, ABSTRACT DISTRIBUTIONS

1.1. Regularized Semigroups

Let A be a closed linear operator, and let R(t), t ≥ 0, be bounded linear operators in a Banach
space H.

Definition 1. A strongly continuous (with respect to t) family of bounded operators {V (t),
t ∈ [0, τ)} = V , τ ≤ ∞, in H is referred to as an R-regularized semigroup with generator A if

V (t)Aζ = AV (t)ζ, ζ ∈ dom A, V (t)ζ = A

t∫

0

V (s)ζ ds + R(t)ζ, ζ ∈ H. (2)

A semigroup is said to be exponentially bounded if ‖V (t)‖ ≤ Me�t, t ≥ 0, for some M > 0 and
� ∈ R and to be local if τ < ∞.

If R(t) = (tn/n!)I, then the family V is an n times integrated semigroup. If dom A = H and
R(t) ≡ R is an invertible bounded operator with dense range, then V is an R-semigroup. If R = I,
then an R-semigroup is a semigroup of the class C0.

Note that an R-semigroup was defined in [13] as a strongly continuous family of bounded oper-
ators satisfying the R-semigroup relation V (t + s)R = V (t)V (s), s, t, s + t ∈ [0, τ), V (0) = R, with
infinitesimal generator

Gf := (λ − L−1
λ )f, λ > �, domG = {f ∈ H : Rf ∈ ranLλ}, Lλf :=

∞∫

0

eλtV (t)f dt,

and such a family is referred to as a C-semigroup. We prefer the notion of R-semigroup in view of
its regularizing property and unlike semigroups of the class C0 (C0-semigroups).
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GENERALIZED SOLUTIONS OF DIFFERENTIAL-OPERATOR EQUATIONS 477

Integrated semigroups were introduced in [14] via the corresponding “semigroup” relation with
an infinitesimal generator, but we use the general definition 1. Examples of integrated, convolution
semigroups, and R-semigroups and their generators including important differential ones can be
found, e.g., in [6, pp. 50–53, 70–79; 15].

1.2. Wiener Processes

Let (Ω,F , P ) be a probability space, let H be a Hilbert space, and let Q be a linear symmetric
nonnegative trace operator with a system of eigenvectors {ei} that forms a basis in the space H

and satisfies the conditions Qei = σ2
i ei and

∑∞
i=1 σ2

i < ∞.

Definition 2. An H-valued stochastic process WQ = {WQ(t), t ≥ 0} is referred to as
a Q-Wiener process if the following conditions are satisfied:

(W1) WQ(0) = 0 almost everywhere;
(W2) WQ has independent increments;
(W3) the distribution law of increments WQ(t)−WQ(s) is normal with the zero expectation and

with covariation operator (t − s)Q;
(W4) WQ has continuous trajectories almost everywhere.

The Q-Wiener process thus defined is a generalization of Brownian motion. It is known that,
unlike the white noise, the Brownian motion process {β(t), t ≥ 0}, where β(t) = β(t, ω) and ω ∈ Ω
[defined via the validity of the conditions (W1)–(W4) for the case in which H = R and Q = I], has
continuous trajectories and finite variation. A finite-dimensional Brownian motion is a finite sum
of the form

∑n

i=1 βi(t)ei, where ei is a basis in R
n and the βi are independent Brownian motions.

For the passage to the infinite-dimensional case, instead of a divergent series in H, one should
consider the regularized sum

WQ(t) :=
∞∑

i=1

σiβi(t)ei, t ≥ 0, WQ(t) ∈ L2(Ω; H), (3)

which is an (H-valued) Q-Wiener process. The formal series

∞∑
i=1

βi(t)ei =: W (t)

is referred to as a cylindric Wiener process.

1.3. White Noise in Spaces of Abstract Distributions

To state the definition of white noise and stochastic convolution in distribution spaces, we
introduce some notation. For an arbitrary Banach space X , by D′(X ) we denote the space of
X -valued distributions on the space D of test functions, and by D′

0(X ) we denote the subspace
of distributions supported on the positive half-line [0,∞). Unlike R-valued Schwartz distributions,
such distributions are referred to as abstract distributions.

Let WQ be an H-valued Q-Wiener process, which, by definition, has trajectories continuous in
t ≥ 0 for almost all ω. We define a Q-white noise WQ in the space D′

0(H) as the generalized
derivative of a regular distribution (the process WQ extended by zero for t < 0) as follows:

〈WQ, θ〉 := −
∞∫

0

WQ(t)θ′(t) dt, θ ∈ D. (4)

Here the integral is understood as the Bochner integral of a function ranging in the space L2(Ω; H)
or in the space H for almost all ω. Note that it follows from the generalization of the integration
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by parts formula [16, p. 35] to the case of abstract Itô integrals that the integral on the right-
hand side in relation (4) coincides with the abstract Itô integral

∫ ∞
0

θ(t) dWQ(t) over the Q-Wiener
process WQ.

We use the convolution of distributions, including a stochastic convolution, in the sense of the
following definition.

Definition 3. Let X , Y, and Z be Banach spaces such that a bilinear operation (u, v) �→ uv ∈ Z
is defined on X × Y. For arbitrary G ∈ D′

0(X ) and F ∈ D′
0(Y), the convolution G ∗ F ∈ D′

0(Z) is
given by the formula

〈G ∗ F, θ〉 := 〈(g ∗ f)(n+m), θ〉 = (−1)n+m

∞∫

0

(g ∗ f)(t)θ(n+m)(t) dt, θ ∈ D, (5)

where g : R → X and f : R → Y are continuous functions such that

〈G, θ〉 = (−1)n

∞∫

0

g(t)θ(n)(t) dt, 〈F, θ〉 = (−1)m

∞∫

0

f(t)θ(m)(t) dt, (g ∗ f)(t) :=

t∫

0

g(t − s)f(s) ds.

Note that for the special case in which G is a regular distribution, i.e.,

〈G, θ〉 =

∞∫

0

G(t)θ(t) dt,

the convolution has the form

〈G ∗ F, θ〉 =

∞∫

0

G(t)〈F (·), θ(t + ·)〉 dt.

1.4. Spaces of Abstract Stochastic Distributions. Singular White Noise

The theory of stochastic distributions deals with the probability spatial (Ω,F , P )=(S ′,B(S ′), μ),
where B(S ′) is the Borel σ-algebra of subsets of the space S ′ of tempered Schwartz distributions
and μ is the Gaussian measure on B(S ′), whose existence follows from the Bochner–Minlos theorem
(e.g., see [17, p. 12]).

The construction of spaces of abstract stochastic distributions is similar to the construction of
the Gelfand triple S ⊂ L2(R) ⊂ S ′. Filinkov and Sorensen [18] constructed a triple with middle
element the space (L2)(H) := L2(S ′, μ; H) of H-valued functions Bochner square integrable with
respect to the measure μ and defined on S ′,

(S)(H) ⊂ · · · ⊂ (Sp)(H) ⊂ · · · ⊂ (L2)(H) ⊂ · · · ⊂ (S−p)(H) ⊂ · · · ⊂ (S)∗(H).

In the space (L2)(H), each element f can be expanded in a Fourier series in the Hermite stochastic
polynomials hα(ω) :=

∏∞
i=1 hαi

(〈ω, ξi〉), ω ∈ S ′, which form an orthogonal basis in (L2)(R), with
H-valued coefficients fα,

f =
∑
α∈T

fαhα, fα =
∑

j

fα,jej ∈ H, ‖f‖2
0,H :=

∑
α,j

α!f 2
α,j =

∑
α

α!‖fα‖2
H
,

where T is the set of all finite multi-indices α = (α1, α2, . . .),

〈hα,hβ〉 = α!δαβ , α! :=
∏

i

αi!, ξi(x) = π−1/4((i − 1)!)−1/2e−x2/2hi−1(x)
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are the Hermite functions forming an orthogonal basis in L2(R), and

hi(x) = (−1)iex2/2 di

dxi
e−x2/2

are the Hermite polynomials.
The elements of the spaces (Sp)(H), p ∈ N, are defined in terms of the behavior of coefficients

of the Fourier series in the basis {hα}ej ; namely, ϕ ∈ (Sp)(H) if

ϕ =
∑
α∈T

ϕαhα, ϕα =
∑

j

ϕα,jej ∈ H, ‖ϕ‖2
p,H :=

∑
α,j

α!ϕ2
α,j(2N)2pα < ∞. (6)

The space (S−p)(H) is defined as the dual space of (Sp)(H); it can be identified with the set of
all formal expansions in the system {hα}ej ,

Φ =
∑
α∈T

Φαhα, Φα =
∑

j

Φα,jej ∈ H, ‖Φ‖2
−p,H :=

∑
α,j

α!Φ2
α,j(2N)−2pα < ∞. (7)

To construct the desired singular white noise process in these spaces, we use a set

{
βj(t) :=

∞∑
i=1

t∫

0

ξi(n)(s) dshεn(i,j)

}

of independent Brownian motions, where the i(n) are defined by a bijection such that n =
n(i, j) ≥ ij and n(i(n), j(n)) = n; this set was constructed in [7, 18] as a generalization of the
expansion of the Brownian motion β ∈ (L2)(R) in the basis {hα},

β(t, ω) = 〈ω,1[0,t]〉 =

〈
ω,

∞∑
i=1

t∫

0

ξi(s) ds ξi

〉
=

∞∑
i=1

t∫

0

ξi(s) dshεi
, εi := (0, 0, . . . , 1

i
, 0, . . .).

By using the expansions for βj, we obtain an expansion for the Wiener process W (t), t ≥ 0,

W (t) =
∞∑

j=1

βj(t) ej =
∑
i,j∈N

( t∫

0

ξi(s) ds ej

)
hεn(i,j) =

∞∑
n=1

( t∫

0

ξi(n)(s) ds ej(n)

)
hεn

.

By virtue of the well-known estimates

|ξi(s)| = O(i−1/4),

∥∥∥∥∥
t∫

0

ξi(s) ds ej

∥∥∥∥∥
2

H

=

∣∣∣∣∣
t∫

0

ξi(s) ds

∣∣∣∣∣
2

= O(i−3/2) (8)

for the Hermite functions, we have

‖W (t)‖2
−1,H =

∑
i,j∈N

∣∣∣∣∣
t∫

0

ξi(s) ds

∣∣∣∣∣
2

(2n(i, j))−2 ≤ C
∑
i,j∈N

i−7/2j−2 < ∞.

Hence it follows that W (t) =
∑∞

j=1 βj(t)ej ∈ (S−1)(H) for each t ≥ 0. So much the more, we have

WQ(t) =
∞∑

j=1

σjβj(t)ej ∈ (S−1)(H).
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Similar estimates imply that the constructed space of generalized H-valued random variables con-
tains the Q-white noise WQ(t) obtained by the formal differentiation of the series for WQ(t) and
the singular white noise W(t) equal to the derivative of W (t),

W(t) =
∑
i,j∈N

(ξi(t)ej)hεn(i,j) =
∑
n∈N

Wεn
(t)hεn

, Wεn
(t) := ξi(n)(t)ej(n), t ≥ 0. (9)

They satisfy the relations
dWQ(t)

dt
= WQ(t) and

dW (t)
dt

= W(t), t ≥ 0, in (S−1)(H).

2. GENERALIZED SOLUTIONS OF STOCHASTIC CAUCHY PROBLEM
WITH WHITE NOISE AND WITH THE GENERATORS

OF INTEGRATED SEMIGROUPS

2.1. Solution Generalized in t of the Cauchy Problem
in Spaces of Abstract Distributions

Let A be a closed linear operator in H, let [dom A] be the domain of A equipped with the graph
norm, let B ∈ L(H;H), ζ ∈ H, and let WQ be the H-valued Q-white noise given by relation (4).

By generalizing Fattorini’s approach to the case of abstract distributions depending on ω as
a parameter, we define a generalized solution of the Cauchy problem (1) with W = WQ ∈ D′

0(H)
as a distribution X ∈ D′

0([dom A]) that is a solution of the convolution equation

〈P ∗ X,ϕ〉 = 〈δ ⊗ ζ, ϕ〉 + 〈BWQ, ϕ〉, ϕ ∈ D, (10)

for ω almost surely, where P := δ′ ⊗ I − δ ⊗ A, 〈δ′ ⊗ I, ϕ〉 := −ϕ′(0)I, and 〈δ ⊗ A,ϕ〉 := ϕ(0)A,
ϕ ∈ D.

This equation can also be represented in the more familiar differential form

〈X ′, ϕ〉 = A〈X,ϕ〉 + 〈δ, ϕ〉ζ + 〈BWQ, ϕ〉, ϕ ∈ D, (11)

if we first formally consider X and WQ as functions, multiply Eq. (1) with the Q-white noise
by ϕ ∈ D, integrate the resulting relation from zero to infinity,

∞∫

0

X ′(t)ϕ(t) dt = −ϕ(0)ζ −
∞∫

0

X(t)ϕ′(t) dt =

∞∫

0

AX(t)ϕ(t) dt +

∞∫

0

BWQ(t)ϕ(t) dt,

and then rewrite it in the form of equality of functionals. All terms in the resulting equation (11)
are well defined.

A distribution G∈D′
0(L(H, [dom A])) is called the convolution inverse of P∈D′

0(L([dom A],H))
if G ∗ P = δ ⊗ I[dom A] and P ∗ G = δ ⊗ IH .

By virtue of the properties of the distribution inverse with respect to convolution inverse distri-
bution, it was shown in [9] that the distribution X defined by the formula

〈X,ϕ〉 := 〈Gζ,ϕ〉 + 〈G ∗ BWQ, ϕ〉, ϕ ∈ D, (12)

is the unique solution of Eq. (10) [and hence of Eq. (11)] that belongs to the space
D′

0(L2(Ω, [dom A])). The first term on the right-hand side in relation (12) is the deterministic
part of the solution depending on the initial conditions, and the second term, given by a general-
ized stochastic convolution, represents the response of the linear system described by Eq. (10) to
the noise WQ.

For the case in which A is the generator of an n times integrated semigroup V , the distribution
G is the nth generalized derivative of V , and, in view of relation (4), the representation of the
solution (12) acquires the form

〈X,ϕ〉 = (−1)n

[ ∞∫

0

ϕ(n)(t)V (t)ζ dt −
∞∫

0

ϕ(n+1)(t) dt

t∫

0

V (t − s)BWQ(s) ds

]
. (13)
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2.2. Solution Generalized in ω of the Cauchy Problem with the Generator
of a Semigroup of the Class C0 and with a Singular White Noise

in Spaces of Stochastic Distributions

Consider the Cauchy problem (1) with the singular white noise W given by relation (9) and
with the generator of a semigroup of the class C0. Since the singular white noise belongs to the
space (S−1)(H), for the problem, we have the following assertion [9] on the existence of a solution
generalized with respect to ω.

Theorem 1. Let A be the generator of a semigroup {U(t), t ≥ 0} of the class C0 in a Hilbert
space H. Then, for each ζ ∈ (dom A) ⊂ (S−1)(H), the Cauchy problem (1) with the singular white
noise W has the unique solution

X(t) = U(t)ζ +

t∫

0

U(t − s)BW(s) ds ∈ (S−1)(H), t ≥ 0.

Here the domain (dom A) in (S−1)(H) is defined as the set of all ζ =
∑

α ζαhα such that ζα ∈
dom A, and the condition

∑
α ‖Aζα‖2(2N)−2α < ∞, Aζ :=

∑
α Aζαhα, is satisfied for ζ ∈ (dom A).

The solution of the problem with the singular white noise W is constructed in the form

X(t) =
∑

α

Xα(t)hα, t ≥ 0,

where the corresponding coefficients Xα(t) ∈ H are defined as the solutions of the well-posed
Cauchy problems

X ′
εn

(t) = AXεn
(t) + BWεn

(t), t ≥ 0, Xεn
(0) = ζεn

,

X ′
α(t) = AXα(t), t ≥ 0, Xα(0) = ζα if α �= εn,

as follows:

Xα(t) =

⎧⎨
⎩

U(t)ζεn
+

t∫
0

U(t − s)BWεn
(s) ds for α = εn

U(t)ζα for α �= εn.

This, together with definition (9) of a singular white noise, implies the relations

X(t) =
∑

α

Xα(t)hα

=
∑

α

U(t)ζα(t)hα +
∑

n

t∫

0

U(t − s)BWεn
(s) dshεn

=: U(t)ζ +

t∫

0

U(t − s)BW(s) ds.

The above-mentioned problems are well-defined in H, because A is the generator of a semigroup
{U(t), t ≥ 0} of the class C0 and the inhomogeneity BWεn

(t) is continuously differentiable with
respect to t ≥ 0 in H.

2.3. SOLUTION OF THE STOCHASTIC CAUCHY PROBLEM
GENERALIZED JOINTLY IN t AND ω

Consider the Cauchy problem (1) with a singular white noise W and with the generator of an n
times integrated semigroup. Let us show that the presence of the white noise and the generator of
the integrated semigroup in the considered equation permits one to construct a solution generalized
jointly in the time and random variables. Just as in the previous section, we seek the solution of
problem (1) as the sum of two terms, the operators of the solution of the corresponding homoge-
neous Cauchy problem applied to the initial data and the convolution of these operators with the
white noise.
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As was mentioned in the introduction, in the case under consideration, essential difficulties are
related to the unboundedness of the solution operators {U(t), t ≥ 0} generated by the operator
A and the behavior of the white noise specifying the stochastic inhomogeneity. In the preced-
ing sections, we have shown that, when constructing a generalized solution of the problem with
the generator of an integrated semigroup in spaces of abstract distributions, one constructs the
distribution of solution operators U(·) and takes a Q-white noise WQ defined in these spaces for
the inhomogeneity, while, when constructing a generalized solution in spaces of abstract stochastic
distributions, for the inhomogeneity one takes the singular white noise W defined in these spaces;
however, in the latter case, the operator A is assumed to be the generator of a semigroup of the
class C0.

In our case, the inhomogeneity W is represented by a singular white noise, and the operator A
generates an integrated semigroup. For such W and A, we construct a solution in two stages, which
specify the statement of the problem. First, we construct a solution Xk, k ∈ N, generalized with
respect to t of the Cauchy problem (1) with stochastic inhomogeneity Wk given by a finite sum of
the series defining the singular white noise (9),

Wk(t) :=
k∑

i,j=1

(ξi(t)ej)hεn(i,j) , t ≥ 0; (14)

i.e., we construct a (generalized with respect to t) solution of Eq. (10) with stochastic inhomogene-
ity BWk,

P ∗ Xk = δ ⊗ ζ + BWk. (15)

Then, as k → ∞, we let Wk(t) tend to W(t) in the space of stochastic distributions (S−1)(H); in
the limit, we obtain a solution generalized in the time and random variables.

Theorem 2. Let the operator A be the generator of an n times integrated semigroup V . Then,
for each ζ ∈ (S−1)(H), the Cauchy problem (1) with the singular white noise (9) has a unique
solution X ∈ D′

0((S−1)(H)) generalized with respect to t and ω,

〈〈X, θ〉, ϕ〉 = 〈〈G ∗ ζ, θ〉, ϕ〉 + 〈〈G ∗ BW, θ〉, ϕ〉, θ ∈ D, ϕ ∈ (S1)(H), (16)

where the convolution inverse G ∈ D′
0(L(H, [dom A])) of the distribution P is defined as the nth

derivative of V by the formula 〈G, θ〉 = (−1)n〈V, θ(n)〉, θ ∈ D.

Proof. First, we construct the solution Xk ∈ D′
0(H) of problem (15) with the inhomogene-

ity BWk; then, by letting k tend to infinity, we construct a solution X generalized in t and ω of
problem (1) in the space D′

0((S−1)(H)),

〈〈P ∗ X, θ〉ϕ〉 = 〈〈δ ⊗ ζ + BW, θ〉, ϕ〉, θ ∈ D, ϕ ∈ (S1)(H). (17)

The construction of the solution is carried out in two stages.
The first stage. First, we use the results of Subsection 2.1, where the solution generalized

in t of the convolution problem (10) with the generator of the integrated semigroup defining the
distribution G inverse to the convolution operator P is constructed by formula (13). By using
formula (13), we construct the solution Xk of Eq. (15) represented in the form

〈P ∗ Xk, θ〉 = 〈δ ⊗ ζ, θ〉 + 〈BWk, θ〉, θ ∈ D, (18)

with stochastic inhomogeneity Wk equal to the finite sum (14) for t ≥ 0 and to zero for t < 0.
The distribution Wk occurring in Eq. (18), as well as the Q-white noise WQ occurring in Eq. (10),

belongs to the space D′
0(L2(Ω; H)). Indeed, since each term (ξi(t)ej)hεn

of the finite sum Wk(t) be-
longs to the space (L2)(H) := L2(S ′,B(S ′), μ; H), which coincides with L2(Ω; H) on Ω = S ′, we
have Wk(t) ∈ L2(Ω; H). Next, by virtue of the continuity of the functions ξi(t), t ≥ 0, this sum is
continuous with respect to t; consequently, Wk ∈ D′

0(L2(Ω; H)), and moreover, the Wk, as well as
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WQ, are regular distributions in D′
0(L2(Ω; H)). Therefore, to construct a solution with an inhomo-

geneity that belongs to D′
0(L2(Ω; H)), one can use formulas (12) and (13) obtained for the case of

n times integrated semigroups and a Q-white noise,

〈Xk, θ〉 : = 〈Gζ, θ〉 + 〈G ∗ BWk, θ〉

= (−1)n

[ ∞∫

0

θ(n)(t)V (t)ζ dt +

∞∫

0

θ(n)(t) dt

t∫

0

V (t − s)BWk(s) ds

]
. (19)

The constructed solutions Xk belong to the space D′
0([dom A]) almost surely for all k and ω.

In addition, each of these Xk belongs to the space D′
0(L2(Ω;H)), which, in the case of Ω = S ′,

coincides with the space D′
0((L2)(H)). Consequently, each Xk belongs to the space D′

0((S−1)(H)).
The second step. Now let us show that the constructed solutions Xk tend as k → ∞ to the

solution X ∈ D′
0((S−1)(H)) of the Cauchy problem (17) considered in the spaces of distributions

with respect to t and ω and defined by relation (16). To this end, we show that 〈Xk, θ〉 is a Cauchy
sequence in the complete space (S−1)(H) and hence converges to some element Xθ in that space.
By virtue of the estimates for coefficients of the expansion of 〈Xk, θ〉 in Hermite stochastic poly-
nomials, which, in turn, follow from the boundedness of the functions θ ∈ D, the estimates (8),
and the boundedness, on any bounded set, of the functions g(t), t ≥ 0, defined in relation (5) for
the stochastic convolution by the distribution G (in the case of an n time integrated semigroup,
G = g(n), g = V ), we have

‖〈(Xk − Xk+p), θ〉‖2
−1,H =

∥∥∥∥∥
k+p∑

i,j=k+1

∞∫

0

θ(m)(t) dt

t∫

0

V (t − s)ξi(s) ds ejhεm(i,j)

∥∥∥∥∥
2

−1,H

≤ C

k+p∑
i,j=k+1

i−1/4(ij)−2 ≤ C(k + 1)−2. (20)

Therefore, 〈Xk, θ〉 is a Cauchy sequence in the space (S−1)(H); consequently, its limit element Xθ

belongs to (S−1)(H). It follows from estimates similar to (20) that Xθ is given by relation (19) with
the singular white noise W instead of Wk. In addition, the mapping Xθ is continuous with respect
to θ ∈ D and ranges in the space (S−1)(H). Consequently, Xθ = 〈X, θ〉, where X ∈ D′

0((S−1)(H))
is given by relation (16).

The resulting solution is unique, because if X1 and X2 are solutions of problem (10), then
X1 − X2 is a solution of the homogeneous equation with the zero initial condition, which has the
unique zero solution; its uniqueness is provided by estimates for the resolvent of an integrated
semigroup [6, pp. 44–45]. The proof of the theorem is complete.

In conclusion, consider the Cauchy problem (1) with a singular white noise and with the gen-
erators of R-semigroups, in particular, semigroups of growth α ≥ 0. Semigroups of growth α are
strongly continuous only for t > 0, and the generator of a semigroup of growth α is the generator of
an integrated semigroup only for α < 1 and is the generator of an R-semigroup in the general case.

3. SOLUTION OF THE STOCHASTIC CAUCHY PROBLEM
WITH WHITE NOISE AND WITH GENERATORS OF R-SEMIGROUPS

In this section, we consider the important special case of R-semigroups, a semigroup of growth α.

3.1. Solution of the Cauchy Problem with a Singular White Noise and with the Generators
of Semigroups of Growth α ≥ 0 Generalized for the Variables t and ω

First, using the results of Section 2, consider the Cauchy problem (1) with a white noise and with
the generator of a semigroup of growth α < 1 as a special case of a problem with the generator of
an integrated semigroup; then, in the next section, we consider it as a special case of the generator
of an R-semigroup for the general case α ≥ 0.

DIFFERENTIAL EQUATIONS Vol. 49 No. 4 2013



484 MELNIKOVA

A family {U(t), t ≥ 0} of linear operators bounded in H for each t > 0 and strongly continuous
with respect to t > 0 is referred to as a semigroup of growth α if the following conditions are
satisfied:

(U1) U(t + τ) = U(t)U(τ), t, τ > 0, U(0) = I;
(Uα) there exist M,α, τ > 0 such that tα‖U(t)‖ ≤ M , t ∈ [0, τ).
The operators U(t), t ≥ 0, are the solution operators of the homogeneous Cauchy problem, but,

unlike semigroups of the class C0, they are not necessarily bounded in a neighborhood of zero.
If α < 1, then the generator of a semigroup of growth α is the generator of a once integrated

semigroup; consequently, the distributions Xk constructed at the first stage of the proof of Theo-
rem 2 are given by the formula corresponding to (19) for n = 1, and a generalized, with respect to
t and ω, solution X ∈ D′

0((S−1)(H)) of the Cauchy problem with the generator of a semigroup of
growth α < 1 is given by relation (16).

If α ≥ 1, then the generator of a semigroup of growth α for each n ∈ N is not the generator
of a semigroup integrated n times; however, as was shown in [19], the generator of a semigroup
of growth α is the generator of an R-semigroup with operator R :=

∫ ∞
0

t[α]e−btU(t) dt, where b
exceeds the growth exponent of the semigroup. In the next section, we use this fact and consider
the Cauchy problem with the generators of R-semigroups. Here, to apply above-obtained results
also to the case of α ≥ 1, we define the Gelfand regularization regU of the semigroup U extended
by zero for t < 0 [20, pp. 64–68] by the formula

〈reg U, θ〉 := lim
ε→0

a∫

ε

U(t)[θ(t) − θ(0) − θ′(0)t − · · · − θ([α])(0)t[α]] dt +

∞∫

a

U(t)θ(t) dt, a > 0.

It is known that the distribution reg U coincides with U on (0,∞): 〈reg U, θ〉 = 〈U, θ〉, θ ∈ D,
supp θ ∈ (0,∞).) Then we construct the distribution G ∈ D′

0(L(H, [dom A])) via the distribution
reg U : 〈G, θ〉 = 〈reg U, θ〉, θ ∈ D, and write out the relation corresponding to (19),

〈Xk, θ〉 = [〈reg Uζ, θ〉+ 〈reg U ∗ BWk, θ〉], θ ∈ D. (21)

Therefore, it follows from the definition of the distribution G and results of Subsection 2.1 that,
in the considered cases of semigroups of growth α, the solution Xk constructed by formula (19)
is a solution of problem (18) for α < 1, and that constructed by formula (21) is a (regularized)
solution of problem (18) for α ≥ 1.

Since, in the construction of a solution generalized with respect to t and ω and obtained in
the case of semigroups of growth α ≥ 1, the equation 〈G, θ〉 = 〈U, θ〉 holds only for test functions
θ with supports in (0,∞) and hence the effect of the initial condition is lost, it follows that the
construction of a solution generalized with respect to ω and the “space” variable of the operator A
can be more natural for the generator of a semigroup of growth α ≥ 1. Let us show how to construct
solutions for the Cauchy problem with a singular white noise and with generators of R-semigroups
(in particular, generators of semigroups of growth α) with the use of the space of Ivanov generalized
functions.

3.2.2. Solution of the Cauchy Problem with a Singular White Noise and with Generators
of R-Semigroups Generalized with Respect to ω and the “Space” Variable

Let the operator A occurring in Eq. (1) be the generator of some R-semigroup V = {V (t),
t ∈ [0, τ)}, τ ≤ ∞. In this case, it follows from the properties of R-semigroups and Theorem 1
that, under (quite restrictive) conditions of the boundedness of the operator family {V (t)R−1}, for
any element ζ ∈ (dom AR−1) ⊂ (S−1)(H), problem (1) with a singular white noise has a unique
solution X(t) ∈ (S−1)(H), t ∈ [0, τ), which is given by the relation

X(t) = V (t)R−1ζ +

t∫

0

V (t − s)R−1BW(s) ds, t ≥ 0. (22)
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Let us show that the solution of problem (1) with the generator of an R-semigroup which does
not necessarily satisfy the above-mentioned boundedness condition can be constructed in spaces of
stochastic distributions (S−1)(H) in whose definition the space H is taken in the form of the spaces
of Ivanov generalized functions H−k and H−∞ [5, pp. 150–152] constructed so as to ensure that the
operator R−1 is bounded in them.

The spaces H−k and H−∞ are introduced as the generalization of spaces of the Schwartz, Sobolev,
Zemanyan, and other types in which various differential operators are defined. The action of some
unbounded operator P = R−1 (the operator P in the case under consideration; it is used for the
construction of spaces) is defined in Ivanov spaces.

Definition 4. Let P be a self-adjoint (unbounded) operator in a Hilbert space H with an
orthonormal basis of eigenvectors {ek} corresponding to eigenvalues |μ1| ≤ |μ2| ≤ · · · We introduce
the Hilbert spaces Hk, k = 0, 1, 2, . . . , and the countably Hilbert space H∞ as follows:

Hk :=
{

ϕ ∈ dom P
k, ‖ϕ‖k =

k∑
i=0

‖Piu‖H

}
, H∞ :=

{
ϕ ∈

∞⋂
k=0

domP
k

}
.

The distribution spaces H−k, k = 0, 1, 2, . . . , and H−∞ are defined as the spaces dual to the spaces
Hk and H∞, respectively.

An equivalent definition of such spaces can be stated in terms of the behavior of the Fourier
coefficients of the elements ϕ =

∑∞
1 ϕ̃jej, f =

∑∞
1 f̃jej :

ϕ ∈ Hk ⇐⇒
∞∑

j=1

|ϕ̃j |2|μj|2k < ∞, f ∈ H−k ⇐⇒
∞∑

j=1

|f̃j|2
(1 + |μj|)2k

< ∞.

The following assertion [5, pp. 153–154] holds for an ill-posed deterministic Cauchy problem
with an operator A not generating a semigroup of the class C0.

Theorem 3. Let A be a self-adjoint (unbounded) operator in the Hilbert space H that generates
a basis of eigenvectors {ej} corresponding to eigenvalues λ1 ≤ λ2 ≤ · · · , and let P := eA τ , τ > 0.
Then for each ζ =

∑
j∈N

ζjej ∈ H−k, there exists a unique solution of the Cauchy problem u′(t) =
Au(t), t ∈ [0, τ), u(0) = ζ, which can be represented in the form u(t) =

∑
j∈N

eλjtζjej ∈ H−(k+1)

and is stable under changes of ζ in H−k. If ζ ∈ H−∞, then u(t) ∈ H−∞.

One can readily see that the operator A occurring in the assumptions of Theorem 3 is the
generator of an R-semigroup {V (t), t ∈ [0, τ)} with the operator R = e−Aτ . This, together
with Theorems 2 and 3, implies the following assertion on the solvability of the stochastic Cauchy
problem (1) with the generator of an R-semigroup generalized with respect to the random and
“space” variables.

Theorem 4. Let R be a self-adjoint operator in a Hilbert space H, let A be the generator of an
R-semigroup {V (t), t ∈ [0, τ)} in H, let {W(t) ∈ (S−1)(H), t ≥ 0} be a singular white noise, and
let B ∈ L(H,H). Then, for P := R−1, the function X(t) ∈ (S−1)(H−k−1), t ∈ [0, τ), defined by
relation (22) is the unique solution of problem (1) for any ζ ∈ (S−1)(H−k), and X(t) ∈ (S−1)(H−∞)
for any ζ ∈ (S−1)(H−∞).

In conclusion, note that the general principles of regularization in the wide sense [15, 21] can
be used in all above-considered approaches to the construction of solutions of the Cauchy problem
for a stochastically perturbed differential-operator equation. The regularization of the Cauchy
problem (1), whose ill-posedness is related to the properties of semigroups generated by the operator
A and the properties of the process W is performed either by using operators correcting the process
W and the semigroup of operators or by an extension of the space of solutions. In this connection,
the principle of extension of spaces, which can seem to be quite different, is based on common
ideas; it is an extension that permits one to apply some unbounded solution operator arising in the
problem.
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