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1. INTRODUCTION

Fe–X (X = Al, Si, Ga, Ge) alloys based on bcc iron
with concentrations of the alloying elements close to
the boundary of the two�phase field are of great inter�
est in light of their unusual magnetic properties. The
soft magnetic alloys Fe–Si and Fe–Al find wide appli�
cation due to the high values of their magnetic suscep�
tibility and high saturation magnetization. Their mag�
netic properties can be significantly improved by heat
treatment in a dc magnetic field or under a mechanical
load, which leads to enhanced magnetic anisotropy
[1–4] (induced magnetic anisotropy). At the same
time in the Fe–Ga and Fe–Ge alloys, in which alloy�
ing is accompanied by a significant increase in the
magnetostriction [5–7], the application of an external
load does not exert a significant effect on the magnetic
anisotropy.

According to the existing concepts [4, 8 –10], both
the induced magnetic anisotropy and the large magne�
tostriction of these alloys are due to a specific struc�
tural state that is characterized by the existence of a
short�range order of the В2 type. However, the origin
of such short�range order is still under discussion (in
particular, the phase with a superstructure of the В2 type
is absent at all in the phase diagrams of the Fe–Ga and
Fe–Ge alloys below TC). As was shown in [3] for

Fe⎯Si, ferromagnetic state calculations do not shed
light on the B2 type short range order formation at
small Si concentrations. It has been shown in [4] that
this type of short�range order can exist in the paramag�
netic state of the Fe–Si alloy and can be inherited
upon quenching. Thus, to understand processes of the
formation of short�range order in these alloys, the
investigation of the behavior of the alloying elements
in various magnetic states of the bcc iron is required.

The behavior of impurities in bcc iron has been
studied theoretically in numerous works [11–14], in
which, as a rule, the calculations were performed for
the case of a completely magnetically ordered (ferro�
magnetic) state. At the same time, in the region of
technologically important temperatures the magnetic
state of bcc iron is partly or completely disordered.
The available experimental data clearly indicate a sig�
nificant effect of magnetism on the processes of solid�
solution decomposition, precipitation, and ordering
[15, 16]. The important role of magnetism in the ther�
modynamics of iron and its alloys was already noted in
the classical works of 1960–1980s [17–20]. Therefore,
the consistent description of iron alloys requires a tran�
sition onto a microscopic level with allowance for the
electronic structure and magnetic state. This approach
has been realized in recent works [4, 9, 10, 22–24], where
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the impact of magnetism on the solubility of alloying ele�
ments and phase equilibrium has been shown.

The paramagnetic (PM) state calculation is a com�
plex problem in the modern physics of solids. There
exist several approaches to its solution, which are
based, e.g., on a temporal averaging of single�site
states (dynamic mean�field theory (DMFT) [25, 26]),
on the approximation of disordered local magnetic
moments (DLM) [27–29], or approximation of para�
magnetic state as a superposition of spin waves [30].
The DMFT method consistently takes into account
the effect of the temperature and electron–electron
correlations; however, to calculate the solution energy
of an impurity, one must use a large supercell, which
makes this method too cumbersome. The DLM
approach is widely used to simulate the paramagnetic
state in terms of the coherent�potential approximation
(CPA), in which it is assumed that there is a 50% prob�
ability that the magnetic atom at a site is in the state with
a spin up and with the same probability in the state with
a spin down. In terms of the CPA, the calculation of the
total energy of the alloy in the paramagnetic state is not
a complicated problem, but the approximations used in
this approach do not allow one to perform atomic relax�
ation. Moreover, at temperatures close to TC, short
range magnetic order, which is not taken into account
in the CPA, can play an important role.

In this work, we calculate the solution energy of
3р (Al, Si) and 4р (Ga, Ge) elements in the ferromag�
netic (FM) and paramagnetic (PM) states of iron with
the use of both the DLM�CPA and the supercell
method. We show that the allowance for the depen�
dence of the solution energy on local magnetic polar�
ization can lead to an increase in the solubility.

2. CALCULATION TECHNIQUE

The electronic structure and total energies calcula�
tions for the FM and PM states of the bcc iron alloyed
by Al, Si, Ga, and Ge were performed using methods
based on the density�functional theory (DFT) [31, 32]
that were realized using the SIESTA [33] and LSGF
[34, 35] packages. The use of these two approaches,
which describe the paramagnetic state in different
ways, permitted us to more precisely and reliably esti�
mate the solution energy of the impurity in different
magnetic states of the bcc iron.

The SIESTA package constructed on the basis of
numerical atomic orbitals (NAO) was used to deter�
mine the local deformations and solution energies of
impurity elements. The validity of applying this
approach to iron alloys was considered in [36, 37],
where it was shown that the reduction of the basis set
for the 3d orbitals of Fe as compared to the usually
employed DZ (double�ζ) and DZP (double ζ polar�
ized) bases does not lead to a loss of accuracy, but
makes it possible to spend less computational effort as
compared to that required when using plane�wave
basis. To describe valence electrons of Fe, we used the

DZ basis for the 4s states and the SZ (single ζ) basis for
the 4p and 3d states; the cut�off radius for the orbitals
was taken to be 2.95 Å. For the impurity atoms, we
used the standard DZP basis. The core electrons have
been taken into account using a norm�conserving
pseudopotential constructed using the Troullier–
Martins scheme [38]. The nonlocal components of the
pseudopotential are represented according to the
Kleinman–Bylander scheme [39]. The exchange�cor�
relation energy is taken into account in the general�
ized�gradient approximation (GGA) [40]. The cut�off
energy Ecutoff was assumed to be 600 Ry. The integra�
tion over the Brillouin zone was replaced by summing
over 6 × 6 × 6 special k points chosen using the
Monkhorst–Pack scheme [41].

The calculations were performed using a 54�atom
supercell containing one impurity atom. In our previous
work [42], it was shown that the use of an enhanced
128�atom supercell only insignificantly increases the
accuracy of the calculation of the energies of solution.
Upon calculating the ferromagnetic state, we per�
formed a relaxation of the atomic positions and of the
shape and volume of the cell; the accuracy of determin�
ing the magnitudes of the forces and of the total energy
was 0.02eV/Å and 1 meV, respectively. In the paramag�
netic case, the relaxation of atomic positions was per�
formed at a fixed volume that was chosen based on the
condition of the minimum of the total energy.

The method of locally self�consistent Green’s
functions (LSGF), which is based on the formalism of
Green’s functions [43, 44] and the coherent�potential
approximation [45], was employed to calculate the
energies of solution in both magnetic states of the bcc
iron (FM and PM). The exchange�correlation energy
was calculated in terms of the generalized�gradient
approximation (GGA) [40]. The multipole correction
of the atomic�sphere approximation (ASA + M)
[46, 47] was used. The calculations were performed
with the maximum orbital quantum number lmах = 3.
Correspondingly, the nonspherical charge density up
to the moment l = 6 was taken into account in the
electrostatic calculation of the energy. In the LSGF
method, each atom of the supercell and its nearest
neighborhood was considered self�consistently in the
zone of local interaction embedded into an effective
medium that retains the symmetry of the initial lattice.
The solution energies of impurity elements in bcc iron
were calculated using the LSGF method for a 54�atom
cell at a fixed volume corresponding to experimental
data for the ferromagnetic state of pure iron (2.86 Å)
[48, 49] and for the paramagnetic state of iron with a
lattice parameter equal to 2.90 Å [50]. The initial mag�
nitudes of the magnetic moments were taken to be
nonzero and could be changed in the process of the
calculation.

The paramagnetic state in both methods was simu�
lated in the approximation of disordered local
moments (DLM). In this model, each site is assumed
to be occupied with a 50% probability by Fe↑ (iron
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with spin up) and by Fe↓ (iron with spin down). In
[51], it was shown that the DLM configuration can be
realized in a supercell with a distribution of magnetic
moments such that the spin�correlation functions on
the nearest coordination shells are equal to zero; in
this case, the results obtained by this method agree
quite well with the DLM�CPA calculations. This con�
figuration, which is constructed using the method of
distributions of special quasi�random structures (SQS)
[52], corresponds to the model of an ideal paramag�
netic state that is realized at temperatures kТ � J0,
where J0 is the magnitude of the exchange energy. On
the other hand, it is known that the total energy deter�
mined as the average value over the ensemble of ran�
dom magnetic configurations (magnetic sampling
method (MSM)) [51] coincides with a good accuracy
with the magnitude obtained when using the cell with
an SQS distribution of magnetic moments. In order to
clarify the role of short�range magnetic order upon the
calculations by the SIESTA method, we used a set of
cells with a random distribution of magnetic moments.

3. CALCULATION RESULTS

We have found that the lattice parameter of the FM
bcc Fe after ionic relaxation is equal to 2.88 Å. This
value agrees well with the experimental value aexpt =
2.86 Å [45] and with the preceding results obtained by
the SIESTA method [33, 34]. The magnetic moment
of Fe atom is 2.5 μВ, which exceeds the values
obtained by the techniques constructed on the plane�
augmented waves (VASP) [53]. When calculating bcc
Fe in the paramagnetic state, the lattice proved to be
unstable and became transformed into the fcc lattice
in the process of ionic relaxation. Therefore, the DLM
calculations were performed at a fixed volume of a
crystallite, which ensured the stability of the magnetic
and crystal structures. Based on a series of DLM cal�
culations, it was found that the minimum energy is
obtained at the lattice parameter equal to 2.88 Å,
which in the limits of error coincides with the а value
of the bcc Fe calculated for the FM state. The same
value was obtained in [54] in terms of the LDA +
DMFT method. The difference in the energies
between the FM and PM states of the bcc Fe is EPM –
EFM = –0.20 eV/atom that is in a good agreement with
the results of [52] where EPM – EFM = –0.24 eV/atom.

The substitution of an impurity atom for an iron
atom leads to a local change in the electronic structure
and in a displacement of nearest Fe atoms from the
equilibrium positions in both the FM and PM states.
Table 1 gives the local deformations for the ferromag�

netic state of Fe–X alloys (  ) [39], which rep�
resent relative changes in the distances between an
impurity atom and the iron atoms on the first and sec�
ond coordination shells (CSs) (the magnitude of the
deformation was determined relative to the calculated
value of the lattice parameter of the bcc Fe equal to

εFM
1( )

, εFM
2( )

2.88 Å). The magnitudes of  and  were
obtained by averaging the relative distances between
the impurity atom and the iron atoms on the first and
second CSs over all calculated magnetic configura�
tions. It can be seen that the magnitudes of the local
deformations change significantly upon the transition
from the FM into the PM state on both the first and
second CSs. As in the case of FM, the local deforma�
tions on both CSs increase with an increasing number
of valence electrons in the impurity element (see Dis�
cussion in [39]). A special case is the Si impurity,
which causes the largest deformations on both the first
and second CSs. In contrast to the FM case, in the PM
state the Fe atoms are displaced toward the impurity
atom, which indicates a change in the relationship
between the Fe–X and Fe–Fe bonds upon the transi�
tion from the FM into the PM state. As follows from a
comparison of the ЕPM and ЕFM energies, there is a
weakening of the Fe–Fe bond by ~0.03 eV, which

leads to a large difference in the deformations  and

 A weakening of this bond also follows from the
magnitudes of the rms deviations (calculated in this
work) of the positions of Fe atoms in pure bcc Fe from
the crystallographic positions in the PM state, which
reach approximately 2% for each coordinate.

The solution energy Еsol characterizes a change in
the binding energy in the system upon the substitution
of an impurity element for an iron atom. The magni�
tude of Еsol was determined as follows:

(1)

where Etot is the total energy of a cell with an impurity,
Etot(Fe) and Etot(X) are the energies per atom in the
ground structural state for the corresponding element,
and M and N are the numbers of atoms of the corre�
sponding elements. As can be seen from Table 2, in the
FM state, the solution energy of substitutional impu�
rities is negative and increases with impurity concen�

εPM
1( ) εPM

2( )

εPM
1( )

εPM
2( )

.

Esol Etot FeNXM( ) NEtot Fe( )–[=

– MEtot X( ) ]/M,

Table 1. Relative changes in distances between the impurity
atom X and Fe atoms on the first (ε(1)) and second (ε(2)) co�
ordination shells (CSs) in the ferromagnetic (FM) and
paramagnetic (PM) states of the bcc iron

Parameters Al Si Ga Ge

 % 1.36 0.04 1.56 1.36

  % –0.69 –0.73 –0.24 –0.32

 % –8.2 –14.1 –7.9 –9.1

 % –1.0 –7.0 1.0 –2.3

εFM
1( )

,

εFM
2( )

,

εPM
1( )

,

εPM
2( )

,
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tration. Since Esol(Ga) and Esol(Ge) become positive,
in the case of the B2 ordering (СX = 50%), this super�
structure does not appear in these alloys at tempera�
tures below the Curie point TC, in contrast to the Fe–
Si and Fe–Al systems, where this phase coexists with
the superstructure of the D03 type. The solution energy
changes regularly depending on the principal quantum
number and the number of valence electrons of
the impurity atom. Silicon has the least solution
energy in all configurations under consideration; this
is explained by the specific features of р–d hybridiza�
tion, as discussed in [39].

The solution energy of an impurity in the ferro�
magnetic state is sensitive to the choice of the lattice
parameter. In the case of SIESTA calculations, the
change in the lattice parameter from the equilibrium
value асаlc = 2.88 Å to the experimental value aexpt =
2.86 Å, which was used in the LSGF approach, leads
to an increase in the solution energy (ΔEsol) from
0.1 eV (for Si) to 0.2 eV (for Ga). As can be seen from
Table 2, the results of the SIESTA and LSGF calcula�
tions at the same lattice parameter prove to be close.
The fixation of the atomic positions increases the solu�
tion energy of an impurity by no more than 0.1 eV.
Therefore, the difference in the results cannot be
explained by only the absence of the relaxation in the
LSGF method but rather is due to the difference
between the approximations employed.

Upon calculating the paramagnetic state of the bcc
Fe using the SIESTA method, it turned out that the
solution energy of an impurity depends substantially
on its local magnetic neighborhood. To obtain a statis�
tical description, we performed a series of calculations
in which the impurity atom substituted for an Fe atom
in different positions chosen in a random way. The dis�
tribution of the obtained energies of solution of an
impurity X is shown in Fig. 1. An analysis of local mag�
netic configurations has shown that the highest and
the lowest values of the solution energy correspond to
the cases where magnetic moments of the same sense

are predominant on the first CS of an impurity (states
with a maximum magnetic polarization). The config�
urations without polarization in the first CS corre�
spond to the total magnetic disordering near the impu�
rity, which is assumed to take place in the CPA
method. The distribution of the solution energies for
such configurations is characterized by a dispersion
that is two�times smaller relative to the average value
(double hatching in Fig. 1).

The origin of the spread of the solution energies
can be due to the difference in the local magnetic con�
figurations in the neighborhood of the impurity.
Indeed, the energy of configurations with maximum
polarization can differ by  ~ 2J0 (J0 =

zJ0i is the energy of exchange interaction of nearest
neighbors of an Fe atom, where z is the number of
nearest neighbors of the Fe atom; e0 and ei are the unit
vectors that determine the directions of the magnetic
moments of Fe atoms) because of the different possi�
ble directions of the magnetic moment of the substi�
tuted Fe atom. In bcc Fe, the magnitude of 2J0 is
approximately 0.4 eV [55], which leads to a significant
dispersion of the solution energies. For the unpolar�
ized configurations, the energy of exchange interac�
tion is J0 = 0 if the lengths of the magnetic moments
are equal; therefore, the observed magnitude of the
dispersion (double hatching in Fig. 1) is determined by
the fluctuations of the length of the magnetic moment
and by the difference in the local deformations of the
first CS relative to the impurity in different magnetic
configurations. Note that, in the case of DLM, the
sensitivity of the solution energy to the change in the
lattice parameter proved to be substantially less than
that in the FM case (the change in Esol is less than
0.1 eV); therefore, when calculating this energy, we
restricted ourselves to the use of statistics with an equi�
librium lattice parameter a = 2.88 Å.

Table 2 contains the solution energies obtained by
averaging over configurations with an unpolarized

2 e0 ei⋅( )J0i i∑

Table 2. Solution energy Esol of alloying elements for different bcc�Fe�based superstructures in the ferromagnetic and para�
magnetic states

Method (structure) Esol (Al), eV/atom Esol (Si), eV/atom Esol (Ga), eV/atom Esol (Ge), eV/atom

SIESTA (B2) –0.66 –0.76 .0.04 0.12
SIESTA (D03) –0.89 –1.18 –0.34 –0.54
SIESTA (Fe53X1) 
a = 2.88 Å FM

–1.02 –1.30 –0.48 –0.77

SIESTA (Fe53X1) 
a = 2.86 Å FM

–0.87 –1.20 –0.28 –0.59

LSGF (Fe53X1) 
a = 2.86 Å FM

–0.73 –0.94 –0.27 –0.35

SIESTA (Fe53X1) 
a = 2.88 Å DLM

–0.96 –1.25 –0.45 –0.69

LSGF (Få53X1) 
a = 2.90 Å DLM

–0.99 –1.02 –0.55 –0.59
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local magnetic neighborhood of the impurity. In spite
of the difference in the approximations used in the
SIESTA and LSGF methods, the results proved to be
close. This coincidence can partly be explained by a
small contribution of the energy of rela xation to the
solution energy in the DLM state, which is less than
0.1 eV. Therefore, the absence of relaxation in the
LSGF method do not produce the significant error in
the solution energy calculations. It should be noted
that, in the case of DLM, the fixation of the atomic
positions also leads to the fixation of magnetic
moments. At the same time, in contrast to the FM
state, in the case of DLM the relaxation of all atomic
positions in the crystallite occurs, which can be seen
from the large value of rms deviation.

4. DISCUSSSION

It can be seen from Table 2 that the regular varia�
tion of the solution energy of an impurity depending
on its position in the Periodic Table for the case of FM
ordering, which was discussed in our previous work
[42], is retained in the PM state as well. This means

that the solubility is determined by the properties of
the Fe–X chemical bonds, which do not change qual�
itatively upon the transition into the paramagnetic
state. At the same time, the weakening of the Fe–Fe
bonds occurs, which follows from the increase in the
energy of Fe upon the transition into the paramagnetic
state. This in turn leads to a significant increase in
local deformations near the impurity atom (Table 1).
Nevertheless, the results of calculations using the
SIESTA and LSGF methods turned out to be close,
which is due to the small contribution from the energy
of relaxation to Esol. Thus, the LSGF method can lead
to an overestimation of the Esol values, but the error
introduced is small.

When using the equilibrium lattice parameter, the
magnitude of Esol is virtually independent of the mag�
netic state of the alloy. However, in the calculations
with the use of the experimental lattice parameter, in
all the alloys under consideration there occurs a
decrease in the magnitude of Esol upon the transition
from the FM into the PM state, which is especially
pronounced for Ga. Thus, as the temperature

35

30

25

20

15

10

5

0
–1.3

–1.2
–1.1

–1.0
–0.9

–0.8
–0.7

–0.6
–0.5

F
re

qu
en

cy
, 

%

Solubility energy, eV

(a) (b)

(c) (d)

35

30

25

20

15

10

5

0
–1.6

F
re

qu
en

cy
, 

%

Solubility energy, eV

35

30

25

20

15

10

5

0
–0.8

F
re

qu
en

cy
, 

%

Solubility energy, eV

35

30

25

20

15

10

5

0
–1.0

F
re

qu
en

cy
, 

%

Solubility energy, eV

–1.5
–1.4

–1.3
–1.2

–1.1
–1.0

–0.9
–0.8

–0.7
–0.6

–0.5
–0.4

–0.3
–0.2

–0.1
0

–0.9
–0.8

–0.7
–0.6

–0.5
–0.4

–0.3
–0.2

Fig. 1. Distribution of the solution energy Esol of an impurity for a sampling of unpolarized (double hatching) and partly polarized
(simple hatching) calculated magnetic configurations for the systems studied: (a) Fe–Al; (b) Fe–Si; (c) Fe–Ga; and (d) Fe–Ge.
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increases to above ТC, we should expect an increase in
the solubility of the impurities under study.

Note that the magnitude of Esol in the case of FM is
more sensitive to the change in the lattice parameter
than in the PM case. This is due to the fact that the
density of states of the ferromagnetic iron has a more
pronounced peaked character; therefore, even a small
change in the lattice parameter can exert a strong
effect on the density of states near the Fermi level and,
consequently, on the character of the Fe–X chemical
bonds.

The above�given values of the solution energy of
impurities have been obtained by averaging over a
sampling of magnetic configurations without polariza�
tion in the first coordination shell. This approach cor�
responds to the approximation employed in the CPA
and is valid for high temperatures (Т � TC) when the
different magnetic configurations are encountered
with identical weights. Short�range magnetic order
appears in the temperature interval close to Curie tem�
perature (T > TC), which results in increasing of
weight of low energy configurations  when averaging
in accordance with Boltzmann law. As can be seen
from Fig. 1, the polarized configurations can possess
a lower energy, which in turn leads to a decrease in
the average value of the solution energy as the tem�
perature decreases.

To estimate the effect of the short�range magnetic
order on the solution energy, we used Eq. (1) in which
Etot was specified as

(2)

where Z =  and the summation was

implemented over configurations with the energies Ei.

Etot Ei
Ei

kT
�����–⎝ ⎠

⎛ ⎞ /Z,exp
i
∑=

Ei

kT
�����–⎝ ⎠

⎛ ⎞ ,exp
i∑

The energies of solution that were obtained by Eqs. (1)
and (2) as functions of Т are given in Fig. 2. The cal�
culated temperature range lies above TC for pure iron
(~1040 K) and corresponds to the technologically
important temperatures of iron alloys. At Т < TC, the
solution energy of impurities in ferromagnetic bcc Fe
is given in Fig. 2. It can be seen that, when taking into
account only unpolarized magnetic configurations,
Esol is almost independent of T. The allowance for the
polarized configurations leads to a significant decrease
in Esol in the temperature range corresponding to the
paramagnetic bcc Fe, especially at temperatures close
to TC.

It can be seen from Fig. 2 that the largest decrease
in Esol upon allowance for short�range magnetic order
occurs in the Fe–Ga system. This is due to the exist�
ence of low values of Esol for the polarized configura�
tions in the distribution given in Fig. 1. Although the
decrease in Esol for the other systems does not exceed
0.1 eV, we should expect the appearance of a singular�
ity in the behavior of the solubility at the Curie point.
However, in the phase diagram of these alloys the limit
of solubility is preceded by a two�phase field, in which
a short�range order of the В2 or D03 type is realized.
The formation of this or that short�range order is
determined by the energy of pairwise effective interac�
tion of impurities. As was shown in [4] for Fe–Si, this
energy and, correspondingly, the type of short�range
order change upon the transition from the FM into the
PM state. The allowance for the magnetic polarization
in a vicinity of an impurity can affect the energy of
interaction and thereby enhance the difference in the
behavior of the alloys in the temperature range above
and below ТC.
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5. CONCLUSIONS

Thus, the use of two methods (SIESTA and LSGF)
of calculating the solution energy in the paramagnetic
state made it possible to obtain reliable results and to
clarify the advantages and disadvantages of the
approximations employed. It has been found that the
energies of solution obtained in terms of the supercell
DLM approach (SIESTA), which takes into account
only the unpolarized magnetic configurations, agree
well with the LSGF results. Although the local defor�
mations in the DLM approximation proved to be sig�
nificant in the vicinity of the impurity, the contribu�
tion from the atomic relaxation to the energy of solu�
tion is small. At the same time, the allowance for
polarized magnetic configurations can lead to a
decrease in Esol, which is especially strongly pro�
nounced at T ~ TC in the Fe–Ga alloy. Since, in the
approach used in our work, it is assumed that the mag�
netic subsystem is slower than the lattice subsystem
(static DLM), this approach can overestimate the
magnitude of the atomic relaxation and the contribu�
tion from the local magnetic polarization to the solu�
tion energy. Nevertheless, we believe that the results
obtained in this work are valid qualitatively.
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