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INTRODUCTION

Ferrofluids (magnetic fluids) are colloidal solutions
of single�domain ferromagnetic particles in nonmag�
netic liquid media. The particle diameter of common
magnetic fluids varies in the range of 7–20 nm. In
order to avoid irreversible coagulation, the particles
are coated with special protecting layers having a
thickness of 2–3 nm. Depending on the type of ferrof�
luid, they are stabilized with either surfactant mole�
cules or electrostatic forces.

For nearly 20 years, ferrofluids have been intensely
investigated and widely used owing to their unique
physical properties. The diffusion and magnetic kinds
of transport of ferroparticles are involved in many
fields of technological application of magnetic fluids
and determine the distribution of particles in the grav�
itational and nonuniform magnetic fields. Therefore,
the study of the transport phenomena in ferrofluids is
of interest from the viewpoint of the development of
both the scientific basis for the application of these
systems and the general theory of transfer in dispersion
media.

In the case of ultimately diluted systems, in which
any interparticle interactions may be ignored, the par�
ticle diffusion coefficient in ferrofluids is determined
by the classical Einstein formula. When the interparti�
cle interactions are significant, the diffusion coeffi�
cient depends on the particle concentration and exter�
nal magnetic field. The coefficients of diffusion and
magnetic transport in magnetic fluids were theoreti�
cally investigated in [1–4] with allowance for mag�
netic, hydrodynamic, and steric interparticle interac�
tions. In those works, it was, in particular, shown that
the effective diffusion coefficient was anisotropic; i.e.,
its value in the direction of an applied magnetic field
differs from that in the transverse direction.

The cases of moderate and weak interparticle inter�
actions, in which the particles could not aggregate,

were considered in the aforementioned works. At the
same time, it is well known that, when the energy of
the magnetic interparticle interactions in ferrofluids
markedly exceeds thermal energy kT, the particles can
form linear chains or dense bulk droplet�shaped
aggregates (see, e.g., [5–9]).

The bulk aggregates have sizes of about 1 µm; they
have repeatedly been observed with ordinary micro�
scopes (see, e.g., [5–7]). Since the sizes of particles in
common ferrofluids are smaller than the visible light
wavelength, their linear chains cannot be registered by
the optical methods. However, such aggregates have
been observed in thin layers of ferrofluids by electron
microscopy [8, 9].

It is known [10, 11] that the presence of the aggre�
gates strongly affects the dynamic and, in particular,
rheological properties of ferrofluids. It is reasonable to
assume that aggregates also affect the transport prop�
erties, in particular, diffusion and magnetophoretic
phenomena, in these systems.

Note that many modern ferrofluids, especially
those composed of magnetite particles, are polydis�
perse and may have rather wide particle size distribu�
tions [10]. The majority of particles in such systems are
too small to form any aggregates and structures.
Chain� and droplet�shaped aggregates are formed by
the largest particles, the concentration of which is, as
a rule, low. Therefore, we can hardly expect a substan�
tial effect of these structures on the total mass transfer
in magnetic fluids.

However, in recent years, ferrofluids have been syn�
thesized, in which the interaction of the majority of
particles is sufficiently strong for aggregation. These
systems include, e.g., ferrofluids based on cobalt
nanoparticles [11] and ferrofluids containing clustered
particles composed of standard ferromagnetic nano�
particles bonded by polymeric shells [12, 13]. Due to
the presence of a large number of single�domain par�
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ticles in a cluster, the clusters strongly interact with
one another and unite into aggregates. Experimental
data show that these composite ferrofluids combine
the sedimentation stability of standard ferrofluids with
the unique rheological properties of magnetorheolog�
ical suspensions.

In ferromagnetic fluids based on cobalt nanoparti�
cles, clusters, etc., that are characterized by rather
strong interparticle interactions, the majority or a sub�
stantial fraction of particles may occur in an aggre�
gated state. Therefore, the influence of aggregates on
their transport properties may be rather strong. More�
over, analysis of magnetodiffusion transport in chain�
containing ferrofluids is of importance in connection
with problems concerning the magnetic separation of
polydisperse ferrofluids, during which the largest par�
ticles capable of forming chain�shaped and other
structures are separated from the main volume of a fer�
rofluid with the help of a nonuniform magnetic field.

The goal of this work was to analyze the effect of
chain�shaped structures on diffusion and magneto�
phoretic mass transfer in ferrofluids containing
strongly interacting particles.

PHYSICAL MODEL AND BASIC 
APPROXIMATIONS

We use the simplest model developed in [14] for
chain�shaped aggregates. Despite its simplicity, use of
this model has resulted in the adequate description of
the rheological properties of different magnetic fluids
formed from both single�domain and clustered parti�
cles [15–18].

Within the framework of this model [14–18], parti�
cles are considered to be identical to ferromagnetic
beads with diameter d and magnetic moment m frozen
into the bulk particle. It is assumed that the particles
can unite to form chains, which are considered spe�
cific heterofluctuations of density. Any interchain
interactions are neglected.

As in [14–18], the energy of the directed dipole–
dipole interaction between adjacent particles in a
chain is noticeably higher than kT. Note that this is the
necessary condition for the formation of aggregates in
a ferrofluid. Therefore, the thermal fluctuations of the
chain shape and orientation of particle moments rela�
tive to the chain axis are ignored. In other words, a
chain is considered to be a straight rodlike aggregate in
which the moments of particles are directed along its
axis. Validity criteria of this approximation have been
given in [14]. In that work, it has, in particular, been
shown that this approximation is justified when ine�

quality ε > κ is fulfilled (ε =  κ = 

where H is the local magnetic field and μ0 is the mag�
netic permeability of vacuum); i.e., the energy of the
interparticle dipole interaction is higher than the
energy of particle interaction with the local magnetic
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field. Finally, we take into account only the magnetic
interaction between adjacent particles in a chain.

The representation of the chains as straight rodlike
aggregates is, of course, a very strong simplification. A
model of flexible chains subjected to an arbitrary mag�
netic field was developed in [19]. However, it leads to
more complex and awkward calculations than the
model of straight chains. At the same time, the esti�
mates obtained for ferrofluid magnetization using the
model of rodlike chains are adequate at least by order
of magnitude, provided that the conditions of its appli�
cability are satisfied [19].

THERMODYNAMIC FUNCTIONS 
OF MAGNETIC FLUIDS

Let us consider an elementary representative vol�
ume of a ferrofluid. This volume contains very many
ferroparticles, and its sizes are assumed to be small as
compared with all other linear sizes of the problem,
including the characteristic length of variations in the
particle concentration. The possibility of the isolation
of this volume is the necessary condition for using
continual methods for describing transfer processes.
Without loss of generality, this volume may be taken to
be equal to unity. Let us denote the number of chains
composed of n particles and contained in the unit vol�
ume of a medium as gn. We assume that, at any time
moment, the condition of the local thermodynamic
equilibrium is fulfilled and each unit elementary vol�
ume may be considered to be thermodynamically
equilibrium. In terms of the used approximation, free
energy F of this volume may be represented in the fol�
lowing form [14]:

(1)

where  is the particle volume.

The first term in square brackets in Eq. (1) corre�
sponds to the entropy of an ideal gas composed of
chains. The second term in the model of straight rod�
like chains describes the dimensionless energy of the
interaction between adjacent particles, and the third
term in the same approximation takes into account the
Langevin free energy of the interaction of the chains
with local magnetic field Н.

The equilibrium state of the considered elementary
volume is inconsistent with distribution function gn
that provides minimum free energy F given satisfied
condition of normalization

(2)
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The standard calculations (see [14] for details)
yield the following expression for the gnfunction:

(3)

Here, parameter x is the Lagrange undetermined
multiplier, which is calculated by substituting rela�
tion (3) into condition (2). As a result, we obtain the
following:

(4)

where y = κϕexp(ε).
Substituting expressions (3) and (4) into (1), we

find free energy F in the explicit form as a function of
local volume concentration ϕ and local field Н. This
expression enables one to determine any thermody�
namic parameters characterizing a magnetic fluid. For
example, local magnetization M is

(5)

Here, χ is the ferrofluid magnetic susceptibility and
L(x) is the Langevin function.

For chemical potential μ of the particles, we, after
simple calculations, obtain the following:

(6)

PARTICLE FLUX

According to the general Batchelor–Einstein for�
mula [20], the flux density jn of particles contained in
n�particle chains may be represented as follows:

(7)

Here, βn is the hydrodynamic mobility tensor of a
chain. The explicit form of its components will be dis�
cussed below. The tensor�type character of the chain
mobility is associated with the anisotropic shape of the
chain and, generally speaking, with an arbitrary orien�
tation of vector jn and the average direction of the
chain axis, which is governed by local field H.

Chemical potential μ of the particles depends on
both particle volume concentration ϕ and absolute
value H of the local magnetic field.

Therefore, we may write the following:

(8)

Relation (8) should be supplemented with the Max�
well equations for the magnetic field induction and
field Н per se. Using the expression M = χ(ϕ, H)H,

where χ is determined by relation (5), these equations
may be written in the following form:

(9)

The former of Eqs. (9) may be rewritten as follows:

(10)

Combining Eqs. (7), (8), (9), and (10), we express the
final expression for flux jn via the spatial derivatives of
concentration ϕ. The total particle flux density is obvi�
ously equal to

(11)

Since Eq. (10) is, generally speaking, nonlinear, a sim�
ple analytical expression for j cannot be obtained from
relations (7)–(10). Two simple, but typical, cases in
which such an expression can be derived are consid�
ered below.

Magnetic Field Parallel
to Concentration Gradient

Let us denote the average magnitudes of the field
and concentration in some physically small volume as
H0 and ϕ0 and write the following relations:

(12)

Without loss of generality, it may be assumed that the
strong inequalities |h|  H0, |ϕ'|  ϕ0 are fulfilled.
Indeed, if H0 and ϕ0 are considered to be average val�
ues in some local region, then, when the condition of
the continuity of the concentration field is satisfied,
we may always select a range sufficiently small for the
aforementioned inequalities to be fulfilled. As rela�
tions (8)–(10) are spatially local, i.e., determined for
each physical point (each physically small volume),
the use of the above inequalities in this volume must
not lead to errors.

Let us introduce a Cartesian coordinate system,
with the Ox axis being directed along the local concen�
tration gradient  Assume that field H0 is also
directed along this axis. As follows from the consider�
ations of symmetry, disturbance h will also have only a
component directed along the Ox axis.
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Taking this circumstance into account, after simple
transformations of relation (10) in a linear approxima�
tions over h and ϕ', we obtain

(13)

Here, the values of χ and its derivatives are determined
for the locally average H0 and ϕ0 values.

By combining relation (13) with expressions (7),
(8), and (11), we derive the following:

(14)

Here,  is the coefficient of the hydrodynamic
mobility of a chain for its motion along its axis and 

 are the particle volume and effective diffusion coef�
ficient at the parallel orientations of the field and con�
centration gradient. For the aforementioned reasons,
there is no difference between ϕ and ϕ' in the spatial
derivative in relation (14).

Magnetic Field Perpendicular to Concentration Gradient

After analogous considerations, we obtain  = 0.

Relations (7) and (11) yield
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Here,  is the coefficient of the hydrodynamic
mobility of a chain for its motion in a direction per�
pendicular to its axis.

Coefficients of Chain Mobility Tensors βn

In the case of an individual particle, coefficient β1
is determined by the classical Stokes formula for the
mobility of a single spherical particle. An analogous
coefficient cannot be exactly calculated for a chain
because of its complex shape. Here, in order to obtain
physically reasonable estimates, we shall simulate a
chain by an ellipsoid of revolution with major and
minor axes nd and d, respectively. Note that the same
model was used in [14–18] to determine the rheologi�
cal characteristics of a ferrofluid.

Mobility coefficients of ellipsoids of revolution
may be found in, e.g., [21]. For longitudinal and per�
pendicular motion relative to the ellipsoid axis, the
mobility coefficients are, respectively, equal to
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Fig. 1. Dependences of (a) dimensionless coefficients of (1) longitudinal  and (2) transverse  diffusion and (b) the longitu�
dinal�to�transverse diffusion coefficient ratio on particle volume concentration ϕ; calculations have been carried out for κ = 2
and ε = 6.

||D D⊥



COLLOID JOURNAL  Vol. 75  No. 1  2013

DIFFUSION AND MAGNETOTRANSPORT 63

Here, a = d/2 is the hydrodynamic particle radius.
Coefficients  and  calculated as functions of con�
centration ϕ are listed in Fig. 1.

The dependence of  on concentration ϕ is
explained by a combination of two similarly directed
factors. First, magnetic attraction of particles and
their aggregation into chains reduce chemical poten�

tial μ and derivative  as compared with the individ�

ual particles. Second, the chain formation diminishes
the effective hydrodynamic mobility of the particles.
Both these factors result in decreasing –ϕ depen�
dence. Along with these factors, the –ϕ dependence
is affected by the retraction of the magnetic particles
into the region where magnetic field H is higher, i.e.,
into the region of lower concentrations ϕ. This factor
is obvious to increase the effective diffusion of the fer�
roparticles. The combination of the oppositely
directed factors results in the nonmonotonic –ϕ
dependence.

The dependences of both diffusion coefficients on
dimensionless local magnetic field are illustrated in
Fig. 2.

A monotonic reduction in  with magnetic field is
explained by an efficient increase in the attraction of
the magnetic particles with a rise in the field due to an
increase in the ordering of their orientations. As a
result, chemical potential μ of the particles decreases
as the field magnitude increases. Therewith, the char�
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acteristic length of the chains enlarges to reduce the
effective hydrodynamic mobility of the particles.
Dependence of  on the field is, along with these fac�
tors, affected by the retraction of the particles into the
region of higher fields, i.e., lower concentrations. This
factor of increasing  obviously becomes stronger
with enhancement of the field. The combination of
the opposite factors results in nonmonotonic depen�
dence of  on the field magnitude.

As can be seen from Figs. 1 and 2, the effective dif�
fusion is strongly anisotropic; i.e., in the considered
ranges of variations in the particle concentration and
magnetic field, the  and  coefficients differ by
nearly one to two orders of magnitude. This great dif�
ference is due to, first, the different hydrodynamic
mobilities of the chains in the directions along and
perpendicular to their axes and, second (in the case of
diffusion along the field), the retraction of the particles
into regions with lower concentrations, which is
caused by the fact that the local magnetic field in them
is higher than that in the regions of higher concentra�
tions. This effect is much stronger for chain�contain�
ing ferrofluids than for fluids containing individual
particles, because the orientations of particle magnetic
moments in a chain are closely correlated; therefore,
the particle moments are more strongly oriented along
the field. As a consequence, the chain–field interac�
tion energy is higher than the total interaction energy
of individual particles.

MAGNETOPHORESIS

Now, let us consider a model case in which concen�
tration ϕ of particles is uniform and their transport is
induced by gradient�type field Н. Maxwell equations
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Fig. 2. Dependences of (a) effective diffusion coefficients and (b) the longitudinal�to�transverse diffusion coefficient ratio on
dimensionless magnetic field magnitude κ. The denotations of the curves are the same as in Fig. 1; the calculations have been
performed for ϕ = 0.025 and ε = 6.
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(9) and (10) show that, in this case, the magnetic field
must vary in the direction perpendicular to the direc�
tion of the field. Therefore, transport of the chains will
take place in the direction perpendicular to the pre�
vailing orientation of their axes. By combining rela�
tions (7), (8), and (11), we derive

(16)

Here, K may be considered to be the coefficient of par�
ticle magnetophoresis. Since chemical potential μ
decreases with an increase in dimensionless magnetic
field κ, coefficient K is positive.

Under the approximation of individual noninter�
acting particles, it must be taken that, in relation (1),
g1=  and gn = 0 when n ≠ 1. In this case, we have
the following:

(17)

Here, subscript 0 refers to the coefficients of magneto�
phoresis and hydrodynamic mobility of individual
particles and η is the viscosity of a carrier medium.

The calculated K and K0 values are presented in
Fig. 3. At relatively low magnitudes κ of the dimen�
sionless field, the chain formation enhances the effec�
tive magnetophoresis coefficient due to the prevailing
influence of increasing magnetization of the medium
as a result of the correlation of the particle moments in
the chains. However, as the magnetic field becomes
stronger, the characteristic length of the chains
increases to decrease their effective hydrodynamic
mobility. As a result, at rather high κ values, the hydro�

,K= ∇κj

1

.n n

n

K ng
∞

⊥

=

∂μ
= − β

∂κ
∑

ϕ v

0 0 0( ), 3 .K L d
ϕ

= β κ β = πη
v

dynamic factor prevails; therefore, coefficient K cal�
culated through formula (16) becomes lower than K0
calculated in the approximation of individual particles
(17).

CONCLUSIONS

The effect of chain structures on the diffusion and
magnetic transport of particles in nanodisperse ferrof�
luids has been analyzed in the simplest approximation
of noninteracting straight rodlike chains. Calculations
have shown that, as a result of the chain formation, a
very strong anisotropy develops in the diffusion prop�
erties of ferrofluids; i.e., the effective diffusion coeffi�
cient in the direction of the field becomes one to two
orders of magnitude higher than that in the transverse
direction. This is explained by the following phenom�
ena: first, retraction of particles into ferrofluid regions
with increased magnitudes of the local magnetic field,
i.e., regions with decreased concentrations, and, sec�
ond, a higher mobility of chains in the directions along
their axes than in the transverse direction. The calcu�
lations predict a monotonic reduction in the coeffi�
cient of the transverse (directed perpendicularly to the
local magnetic field) diffusion with both the particle
concentration and the magnitude of the local field.
The longitudinal (directed along the field) diffusion
coefficient nonmonotonically depends on the particle
volume concentration and magnetic field.

At low magnitudes of the dimensionless field, the
presence of chains enhances the effective coefficient
of magnetophoresis as compared with individual non�
interacting particles, while, at high magnitudes of the
field, it decreases this coefficient.

In spite of the fact that the approximation of non�
interacting rodlike aggregates is a strong simplification
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of the system, it, previously, resulted in describing the
rheological properties of different magnetic fluids and
suspensions. This circumstance leads us to believe that
this approximation, at least in principle, adequately
describes the effect of the chains on the transport
properties of such systems. Indeed, analysis [19] has
indicated that the approximation of rodlike chains
makes it possible to estimate the chain magnetic
moment, at least to an order of magnitude. As was
shown in [22], although magnetic and steric interac�
tions of the chains affect their size distribution func�
tion, at low particle concentrations, when the condi�
tions for their phase condensation are absent, this
effect is not too strong. Therefore, as a first approxi�
mation, it may be ignored. As to the hydrodynamic
interchain interaction, successful application of the
approximation of noninteracting chains for describing
the rheological properties of magnetic fluids suggests
that this interaction also does not play a key role in the
development of their dynamic properties.

It should be noted that, at rather high, but real, val�
ues of particle concentration and interparticle mag�
netic interaction energy, phase condensation of parti�
cles into dense bulk droplets takes place in magnetic
fluids. Analysis of the transport phenomena under
such conditions requires the solution of a separate
problem.
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