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Abstract

In this paper, we consider the problem of the shortest common pa-
rameterized supersequence. In particular, we consider an explicit reduc-
tion from the problem to the satisfiability problem.
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The well-known problem of the shortest common supersequence (SCS) is a
classical distance measure for strings. Another well-studied string comparison
measure is that of parameterized matching, where two equal-length strings are
a parameterized-match if there exists a bijection on the alphabets such that
one string matches the other under the bijection (see e.g. [1, 2]). For in-
stance, it is considered the periodicity of parameterized strings. These results
and some other studies about the periodicity of parameterized strings showed
considerable differences between parameterized strings and ordinary strings.
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Nevertheless, binary parameterized strings behave in a very similar way as
ordinary strings with respect to repetitions. It is interesting to note that most
of the works associated with parameterized pattern matching present poly-
nomial time algorithms. There have been several attempts to accommodate
parameterized matching along with other distance measures. In this paper
we consider the problem of the shortest common parameterized supersequence
(SCPS) which combines the SCS measure with parameterized matching.

A model of parameterized pattern matching was introduced in [3]. The
main motivation for this scheme lies in software maintenance, where programs
are to be considered “identical” even if variable names are different. Therefore,
strings under this model are comprised of symbols from two disjoint sets Σ and
Π containing fixed symbols and parameter symbols, respectively. Formally,
parameterized pattern matching is as follows (e.g. [4]). A parameterized string
is a string over Σ ∪ Π. Two parameterized strings S1 and S2 of same length
are said to parameterized match if there exists a bijection f : Π1 → Π2,
where Π1 and Π2 are the symbols from Π in S1 and S2 respectively, such that
the following holds: S1 (S2, respectively) equals S2 (S1, respectively) when any
occurrence x ∈ Π1 (Π2, respectively) is replaced by f(x) (f−1(x), respectively).

Given two sequences S and T over some fixed alphabet Ξ, the sequence S
is a supersequence of T if T can be obtained from S by deleting some letters
from S. Notice that the order of the remaining letters of S bases must be
preserved. Respectively, T is a subsequence of S if T can be obtained from S
by deleting some letters from S. The length of a sequence S is the number of
letters in it and is denoted as |S|. For simplicity, we use S[i] to denote the ith
letter in sequence S.

Given two sequences S and T over some fixed alphabet Σ∪Π, the sequence
S is a parameterized supersequence of T if T parameterized match U where
U can be obtained from S by deleting some letters from S. Similarly, given
two sequences S and T over some fixed alphabet Σ ∪ Π, the sequence T is a
parameterized subsequence of S if T parameterized match U where U can be
obtained from S by deleting some letters from S.

Given sequences S1 and S2 over some fixed alphabet Σ ∪ Π, the SCPS
problem asks for a shortest sequence T that is a parameterized supersequence
of S1 and S2. In the decision version SCPS can be formulated as following:

The shortest common parameterized supersequence problem
(SCPS):

Instance: Given an alphabet Σ ∪ Π, sequences S1 and S2, and positive
integer k.

Question: Is there a sequence T , |T | ≤ k, that is a parameterized super-
sequence of S1 and S2?

The algorithmic properties of different problems of finding regularities are
thoroughly studied in theoretical computer science (see e.g. [5] – [10]). In
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particular, encoding different hard problems as instances of different variants
of the satisfiability problem and solving them with very efficient satisfiabil-
ity algorithms has caused considerable interest (see e.g. [11] – [29]). Given
sequences S1 and S2 over some fixed alphabet Σ ∪ Π, the longest common
parameterized subsequence (LCPS) problem asks for a longest sequence T
that is a parameterized subsequence of S1 and S2. In [30] proved that LCPS
is NP-hard. Note that by inserting the uncommon symbols (taking into ac-
count bijections) while preserving the symbol order, we can get a shortest
common parameterized supersequence from longest common parameterized
subsequence. Therefore, SCPS is NP-hard. Since |S1| + |S2| = |T1| + 2|T2|
where T1 is a shortest common parameterized supersequence of S1 and S2 and
T2 is a longest common parameterized subsequence of S1 and S2, it is obvious
that to solve SCPS we can use some algorithms for LCPS. However, in order
to obtain a solution of decision version of SCPS we need multiple runs of a
solver for decision version of LCPS. In view of complexity of SCPS, develop-
ment of a direct solver for SCPS is preferred. In this paper, we consider an
explicit reduction from SCPS to the satisfiability problem. Let

Σ = {a1, a2, . . . , a|Σ|},Π = {b1, b2, . . . , b|Π|},

ϕ1,1[i] = ∨1≤j≤kx[i, j],

ϕ1,2[i] = ∧1≤j[1]<j[2]≤k(¬x[i, j[1]] ∨ ¬x[i, j[2]]),

ϕ1 = ∧1≤i≤|S1|(ϕ1,1[i] ∧ ϕ1,2[i]),

ϕ2[j] = ∧1≤i[1]<i[2]≤|S1|(¬x[i[1], j] ∨ ¬x[i[2], j]),

ϕ2 = ∧1≤j≤kϕ2[j],

ϕ3[i, j] = ∧1≤i[1]≤|S1|,1≤j[1]≤k,i[1]>i,j [1]<j(¬x[i, j] ∨ ¬x[i[1], j[1]]),

ϕ3 = ∧1≤i≤|S1|,1≤j≤kϕ3[i, j],

ϕ4,1[i] = ∨1≤j≤ky[i, j],

ϕ4,2[i] = ∧1≤j[1]<j[2]≤k(¬y[i, j[1]] ∨ ¬y[i, j[2]]),

ϕ4 = ∧1≤i≤|S2|(ϕ4,1[i] ∧ ϕ4,2[i]),

ϕ5[j] = ∧1≤i[1]<i[2]≤|S2|(¬y[i[1], j] ∨ ¬y[i[2], j]),

ϕ5 = ∧1≤j≤kϕ5[j],

ϕ6[i, j] = ∧1≤i[1]≤|S2|,1≤j[1]≤k,i[1]>i,j [1]<j(¬y[i, j] ∨ ¬y[i[1], j[1]]),

ϕ6 = ∧1≤i≤|S2|,1≤j≤kϕ6[i, j],

ψ1,1[i] = ∨1≤j≤|Π|u[i, j],

ψ1,1 = ∧1≤i≤|S1|,S1[i]∈Πψ1,1[i],
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ψ1,2[i] = ∧1≤j[1]<j[2]≤|Π|(¬u[i, j[1]] ∨ ¬u[i, j[2]]),

ψ1,2 = ∧1≤i≤|S1|,S1[i]∈Πψ1,2[i],

ψ1 = ψ1,1 ∧ ψ1,2,

ψ2,1[i[1], i[2], j] = ¬u[i[1], j] ∨ u[i[2], j],

ψ2,2[i[1], i[2], j] = u[i[1], j] ∨ ¬u[i[2], j],

ψ2[i[1], i[2]] = ∧1≤j≤|Π|,l∈{1,2}ψ2,l[i[1], i[2], j],

ψ2 = ∧1≤i[1]<i[2]≤|S1|,S1[i[1]]=S1[i[2]]∈Πψ2[i[1], i[2]],

ψ3 = ∧1≤i[1]<i[2]≤|S1|,S1[i[1]] �=S1[i[2]],S1[i[1]],S1[i[2]]∈Π,1≤j≤|Π|(¬u[i[1], j] ∨ ¬u[i[2], j]),

ψ4,1 = ∧1≤i≤|S2|,S2[i]∈Π ∨1≤j≤|Π| v[i, j],

ψ4,2 = ∧1≤i≤|S2|,S2[i]∈Π,1≤j[1]<j[2]≤|Π|(¬v[i, j[1]] ∨ ¬v[i, j[2]]),

ψ4 = ψ4,1 ∧ ψ4,2,

ψ5,1[i[1], i[2], j] = ¬v[i[1], j] ∨ v[i[2], j],

ψ5,2[i[1], i[2], j] = v[i[1], j] ∨ ¬v[i[2], j],

ψ5[i[1], i[2]] = ∧1≤j≤|Π|l∈{1,2}ψ5,l[i[1], i[2], j],

ψ5 = ∧1≤i[1]<i[2]≤|S1|,S2[i[1]]=S2[i[2]]∈Πψ5[i[1], i[2]],

ψ6 = ∧1≤i[1]<i[2]≤|S2|,S2[i[1]] �=S2[i[2]],S2[i[1]],S2[i[2]]∈Π,1≤j≤|Π|(¬v[i[1], j] ∨ ¬v[i[2], j]),

ρ1[i[1], i[2], j] = ∧1≤l≤|Π|(¬x[i[1], j] ∨ ¬y[i[2], j] ∨ ¬u[i[1], l] ∨ ¬v[i[2], l]),

ρ1 = ∧1≤i[1]≤|S1|,1≤i[2]≤|S2|,1≤j≤k,S1[i[1]],S2[i[2]]∈Πρ1[i[1], i[2], j],

ρ2 = ∧1≤i[1]≤|S1|,1≤i[2]≤|S2|,1≤j≤k,S1[i[1]]∈Σ,S2[i[2]]∈Π(¬x[i[1], j] ∨ ¬y[i[2], j]),

ρ3 = ∧1≤i[1]≤|S1|,1≤i[2]≤|S2|,1≤j≤k,S1[i[1]]∈Π,S2[i[2]]∈Σ(¬x[i[1], j] ∨ ¬y[i[2], j]),

ρ4[j] = ∧1≤j≤k(¬x[i[1], j] ∨ ¬y[i[2], j]),

ρ4 = ∧1≤i[1]≤|S1|,1≤i[2]≤|S2|,S1[i[1]]∈Σ,S2[i[2]]∈Σ,S1[i[1]] �=S2[i[2]]ρ4[j],

ξ = (∧6
i=1ϕi) ∧ (∧6

i=1ψi) ∧ (∧4
i=1ρi).

Theorem. Given a fixed alphabet Σ∪Π, sequences S1 and S2, and positive
integer k. There is a sequence T , |T | ≤ k, that is a parameterized superse-
quence of S1 and S2 if and only if ξ is satisfiable.

Proof. Given a fixed alphabet Σ ∪ Π, sequences S1 and S2, and positive
integer k. Suppose that there is a sequence T , |T | ≤ k, that is a parameterized
supersequence of S1 and S2. Without loss of generality we can assume that
|T | = k. Let x[i, j] = 1 where 1 ≤ i ≤ |S1|, 1 ≤ j ≤ k, and image of S1[i]
is located in T at position j. Respectively, let y[i, j] = 1 where 1 ≤ i ≤ |S2|,
1 ≤ j ≤ k, and image of S2[i] is located in T at position j.
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Since T is a parameterized supersequence of S1 and S2, there are bijections
f1 and f2 which transform S1 and S2 into sequences U1 and U2 such that T is
a supersequence of U1 and U2. Let u[i, j] = 1 where 1 ≤ i ≤ |S1|, S1[i] ∈ Π,
1 ≤ j ≤ |Π|, and f1(S1[i]) = bj . Respectively, let v[i, j] = 1 where 1 ≤ i ≤ |S2|,
S2[i] ∈ Π, 1 ≤ j ≤ |Π|, and f2(S2[i]) = bj .

Assume that all other variables are equal to 0.
It is easy to see that ϕ1,1[i] = 1 if and only if there is j such that x[i, j] = 1.

Since T is a parameterized supersequence of S1, there is j such that image of
S1[i] is located in T at position j. Therefore, by definition of x[i, j], ϕ1,1[i] = 1
for all i. Clearly, we can suppose that there is only one value of j such that
image of S1[i] is located in T at position j. Note that ϕ1,2[i] = 1 if and only if
for given value of i there is no more then one value of j such that x[i, j] = 1.
Thus, ϕ1,2[i] = 1 for any i. So, ϕ1 = 1. By definition of supersequence, if
i[1] 	= i[2], then images of S1[i[1]] and S1[i[2]] are located in T at different
positions. Thus, by definition of x[i, j], for any j there is no more then one
value of i such that x[i, j] = 1. Therefore, ϕ2[j] = 1 for all j. So, ϕ2 = 1.
Suppose that T [j] is the image of S1[i] and T [j[1]] is the image of S1[i[1]]. By
definition of supersequence, if i[1] > i, then j[1] > j. Thus, by definition of
x[i, j], it is easy to see that if x[i, j] = 1, then x[i[1], j[1]] = 0 for any i, j, i[1],
j[1] such that i[1] > i and j[1] < j. Therefore, ϕ3[i, j] = 1 for all i and j.
So, ϕ3 = 1. Similarly, we can show that ϕ4 = ϕ5 = ϕ6 = 1. Using the same
arguments and definitions of u[i, j] and v[i, j], we can check that ∧6

i=1ψi = 1.
Also it is easy to verify that satisfiability of ∧4

i=1ρi follows from definition of f
and definitions of x[i, j], y[i, j], u[i, j], and v[i, j]. Therefore, ξ = 1.

Now suppose that ξ = 1. Since ϕ1 = 1, it is easy to see that, for all i, there
is only one value of j such that x[i, j] = 1. Similarly, in view of ϕ4 = 1, it is
clear that, for all i, there is only one value of j such that y[i, j] = 1. So, we
can consider values of x[i, j] and y[i, j] as a definition of positions of S1[i] and
S2[i] in T . In view of ϕ2 = 1 and ϕ5 = 1, each letter has a unique position.
Since ϕ3 = 1 and ϕ6 = 1, it is easy to check that order of letters is preserved.

Similarly, we can consider ∧6
i=1ψi as a definition of bijections f1 and f2.

Using this assumption by direct verification we can check that T is a parame-
terized supersequence of S1 and S2.

Clearly, ξ is a CNF. So, ξ give us an explicit reduction from SCPS to SAT.
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