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Abstract

In this paper we consider an approach to solve the restricted common
superstring problem. This approach is based on an explicit reduction
from the problem to the satisfiability problem.
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Computational complexity of different problems of finding regularities and
efficient algorithms for these problems are thoroughly studied in theoretical
computer science (see e.g. [1] – [6]). In particular, complexity of the re-
stricted common superstring problem and some approximation algorithms for
the problem was considered in [7, 8].

Let Σ = {a1, . . . , am} be a finite alphabet. Let S = {S1, . . . , Sn} be a set
of strings over Σ. We assume that S[i] is the ith letter in string S. Also, we
assume that S[i, j] is the substring of S consisting of the ith letter through the
jth letter. The length of a string S is the number of letters in it. We assume
that |S| is the length of S. We use #occ(X, Y ) to denote |{i | X = Y [i, j]}|.
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The decision version of the restricted common superstring problem can be
formulated as following.

The restricted common superstring problem (RCSstr):

Instance: A set S of strings over Σ, a string T , and a positive integer k.
Question: Is there a string S such that |S| = |T |, S[π(i)] = T [i], for all

1 ≤ i ≤ |T |, and |{i | #occ(Si, S) ≥ 1}| ≥ k?
The problem RCSstr is NP-complete [7]. Note that encoding different

hard problems as instances of SAT and solving them with efficient satisfiability
algorithms has caused considerable interest (see e.g. [9] – [20]). In this paper,
we consider an approach to solve the RCSstr problem. Our approach is based
on an explicit reduction from the problem to the satisfiability problem.

Let

ϕ[1] = ∧1≤i≤|T | ∨1≤j≤|T | w[i, j],

ϕ[2] = ∧1≤i≤|T | ∧1≤j[1]<j[2]≤|T | (¬w[i, j[1]] ∨ ¬w[i, j[2]]),

ϕ[3] = ∧1≤i≤|T | ∨1≤j≤m x[i, j],

ϕ[4] = ∧1≤i≤|T | ∧1≤j[1]<j[2]≤m (¬x[i, j[1]] ∨ ¬x[i, j[2]]),

ϕ[5] = ∧1≤i≤|T | ∧1≤j≤|T | ∧1≤p≤m,T [j] �=ap(¬w[i, j] ∨ ¬x[i, p]),

ϕ[6] = ∧1≤i≤k ∨1≤j≤n y[i, j],

ϕ[7] = ∧1≤i≤k ∧1≤j[1]<j[2]≤n (¬y[i, j[1]] ∨ ¬y[i, j[2]]),

ϕ[8] = ∧1≤i≤k,

1≤j≤n

(¬y[i, j] ∨ (∨1≤p≤|T |−|Sj|+1z[j, p])),

ϕ[9] = ∧1≤i≤k,

1≤j≤n

∧1≤p[1]<p[2]≤|T |−|Sj|+1 (¬y[i, j] ∨ ¬z[j, p[1]] ∨ z[j, p[2]]),

ϕ[10] = ∧1≤i≤k,

1≤j≤n,

1≤p≤|T |−|Sj|+1,

p≤q≤p+|Sj|−1

∧1≤r≤m,Sj [q−p+1] �=ar (¬y[i, j] ∨ ¬z[j, p] ∨ ¬x[q, r]),

ξ = ∧10
i=1ϕ[i].

It is easy to check that there is a string S such that |S| = |T |, S[π(i)] = T [i],
for all 1 ≤ i ≤ |T |, and |{i | #occ(Si, S) ≥ 1}| ≥ k if and only if ξ is satisfiable.
It is clear that ξ is a CNF. So, ξ gives us an explicit reduction from RCSstr

to SAT. Now, using standard transformations (see e.g. [21]) we can obtain an
explicit transformation ξ into ζ such that ξ ⇔ ζ and ζ is a 3-CNF. Clearly, ζ
gives us an explicit reduction from RCSstr to 3SAT.

We have designed generators of natural instances for RCSstr. We consider
our genetic algorithms OA[1] (see [22]), OA[2] (see [23]), OA[3] (see [24]), and
OA[4] (see [25]) for SAT. We used heterogeneous cluster. Each test was runned
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time average max best

OA[1] 33.7 min 2.32 h 7.11 min
OA[2] 1.21 h 2.94 h 3.44 min
OA[3] 1.43 h 2.27 h 9.52 min
OA[4] 48.2 min 2.66 h 4.83 min

Table 1: Experimental results for RCSstr.

on a cluster of at least 100 nodes. Selected experimental results are given in
Table 1.
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