
Applied Mathematical Sciences, Vol. 7, 2013, no. 24, 1183 - 1190
HIKARI Ltd, www.m-hikari.com

A Genetic Algorithm

with Expansion and Exploration Operators

for the Maximum Satisfiability Problem

Anna Gorbenko

Department of Intelligent Systems and Robotics
Ural Federal University

620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com

Vladimir Popov

Department of Intelligent Systems and Robotics
Ural Federal University

620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

There are many problems that standard genetic algorithms fail to
solve. Refinements of standard genetic algorithms that can be used to
solve hard problems has caused considerable interest. In this paper, we
consider genetic algorithms with expansion and exploration operators
for the maximum satisfiability problem.

Keywords: genetic algorithms, expansion operator, exploration operator,
maximum satisfiability

The maximum satisfiability problem (MAX SAT) is the problem of de-
termining the maximum number of clauses of a given Boolean formula in con-
junctive normal form (CNF) that can be satisfied by some assignment. The
problem MAX SAT remains NP-hard even if all expressions are written in
conjunctive normal form with k variables per clause (k-CNF), for any k ≥ 2
(see e.g. [1]). The problem MAX k-SAT is the problem of determining the
maximum number of clauses of a given k-CNF that can be satisfied by some
assignment. It should be noted that investigation of algorithms for MAX
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SAT received a lot of attention (see e.g. [2]). In this paper, we consider ge-
netic algorithms with expansion and exploration operators to try to solve the
maximum satisfiability problem.

Genetic algorithms are used to solve many different hard problems. In
particular, we can mention such problems as the set of parameterized k-covers
problem [3], different problems of sensor placement (see e.g. [4] – [9]), the
binary paint shop problem [10], various problems of bioinformatics (see e.g.
[11] – [20]), technical vision (see e.g. [21] – [25]), robot self-awareness (see e.g.
[26] – [30]), robot anticipation (see e.g. [31] – [34]), different planning problems
(see e.g. [35] – [39]), graph problems (see e.g. [40] – [43]), visual landmarks
problems (see e.g. [44] – [47]), etc. But, it is well known that there are many
problems that standard genetic algorithms fail to solve.

One of a number of ideas of refinement of standard genetic algorithms was
proposed in [48]. The idea is to preserve good building blocks found by the
genetic algorithm. For this purpose, we can use some constraints on the choice
of recombination. In particular, an expansion operator can be used [48]. Also,
we can use exploration operator as a refinement of mutation [48].

Expansion and exploration operators were proposed in [48] for the shortest
common superstring problem. In particular, an expansion operator is an addi-
tion of another block to increase the individual’s genome length by one block.
The added block is selected by expansion operator in such a way that the
genome will still be a subsequence of at least one solution. Exploration op-
erator acts as a mutative force within the building blocks population. This
operator injects noise and thus promotes exploration of the huge building
blocks search space. An individual may be removed and re-initialized as a
new individual.

Let
f(z[1], z[2], . . . , z[m])

be a Boolean function. Let

W = {u[1], u[2], . . . , u[n]},

u[i] ∈ {0, 1}+,

1 ≤ i ≤ n,

be a population of chromosomes. We assume that

u[i] = u[i, 1]u[i, 2] . . . u[i, m],

u[i, j] ∈ {0, 1},
1 ≤ i ≤ n,

1 ≤ j ≤ m.
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We can consider u[i] as a solution for

f(z[1], z[2], . . . , z[m]).

In particular, we assume that z[j] = u[i, j].
We consider only CNFs. So,

f = ∧k
j=1C[j](z[1], . . . , z[m])

where
C[j](z[1], z[2], . . . , z[m])

is a clause. We say that u[i, j] is a true assignment for

C[k](z[1], z[2], . . . , z[m])

if u[i, j] ∈ {0, 1} and z[j] = u[i, j] evaluates

C[k](z[1], z[2], . . . , z[m])

to true. Let C(u[i, j]) be the set of clauses such that

C[k](z[1], z[2], . . . , z[m]) ∈ C(u[i, j])

if and only if u[i, j] is a true assignment for

C[k](z[1], z[2], . . . , z[m]).

Now, we consider a standard genetic algorithm (SGA) for the satisfiability
problem. A proportion P of the existing population is selected to breed a new
generation during each successive generation. We assume that

P = �n

2
�.

Individual chromosomes are selected by a fitness function F . To gener-
ate a second generation population of chromosomes, we can use two genetic
operators: crossover C and mutation M.

Usually, crossover defines a part of parent chromosome which used for con-
struction of child chromosome. As C we use standard random operator. If u[i]
and u[j] are two parent chromosomes, then we obtain two child chromosomes:

C(u[i], u[j]) = u[i, 1] . . . u[i, C(u[i])]u[j, C(u[i]) + 1] . . . u[j, m],

C(u[j], u[i]) = u[j, 1] . . . u[j, C(u[j])]u[i, C(u[j]) + 1] . . . u[i, m].

For
u[i[1]], u[i[2]], . . . , u[i[p]],
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we consider
C(u[i[1]], u[i[2]]), C(u[i[2]], u[i[1]]), . . . ,

C(u[i[p − 1]], u[i[p]]), C(u[i[p]], u[i[p − 1]])

if p = 2q,
u[i[1]], C(u[i[2]], u[i[3]]), C(u[i[3]], u[i[2]]), . . . ,

C(u[i[p − 1]], u[i[p]]), C(u[i[p]], u[i[p − 1]])

if p = 2q + 1. This generational process is repeated until a termination condi-
tion T has been reached.

As T we consider time function. We assume that

F(u[i]) = | ∪m
j=1 C(u[i, j])|.

Let M be a random function which with small probability changes values of
u[i, j].

Now, we consider a genetic algorithm with expansion and exploration op-
erators (GAEE). We use the following expansion operator instead C. Let

E1(u[i], u[j]) = v[1] . . . v[m]

where

v[k] =
{
u[i, k], |C(u[i, k])| > 0,
u[j, k], |C(u[i, k])| < 1.

Also, we use exploration operator E2 instead M. If r is a number of gen-
eration

Wr = {ur[1], ur[2], . . . , ur[n]},
then

Fr =
n∑

i=1

F(ur[i]).

For any r > 1 and i < n, we assume that

F(ur[i]) ≥ F(ur[i + 1]).

Let DH(X, Y ) be the Hamming distance between strings X and Y . Let

hr =
n∑

i=1

DH(ur[i], ur−1[i]),

Hr =
∑

1≤i<j≤n

DH(ur[i], ur[j]).

Operator E2 used only if

α(Fr, hr, Hr) < 1
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where α(Fr, hr, Hr) is a polynomial function which is predicted by a genetic
algorithm. Operator E2 removes chromosome ur[i] only if ur[i] has high fitness
value and there is ur−1[j] such that

DH(ur[i], ur−1[j]) < m
1
4 .

Operator E2 replaces ur[i] by new random chromosome v such that

DH(ur[i], v) >
m

2
.

Operator E2 replaces no more than n
6

chromosomes.
Selected experimental results are given in Table 1.

average number of generations 103 104 105 106

average number of true clauses for SGA 55 % 59 % 64 % 68 %
average number of true clauses for GAEE 53 % 61 % 75 % 82 %

Table 1: Experimental results for SGA and GAEE.
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