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Abstract

In this paper we consider an approach to solve the string barcoding
problem. This approach is based on an explicit reduction from the
problem to the satisfiability problem.

Keywords: string barcoding problem, satisfiability, NP-complete

Investigation of different regularities can be used to identify various impor-
tant knowledge (see e.g. [1] – [15]). In particular, the string barcoding problem
was proposed for rapid identification of unknown pathogens [16].

Given sequences S and T over some finite alphabet Σ. Let S ≤ T if and
only if S is a subsequence of T . Let

S({S[1], . . . , S[n]}) = {X | ∃i ∈ {1, . . . , n}(X ≤ S[i])}.

Let
X!(S, T )

if and only if
(X ≤ S ∧X �≤ T ) ∨ (X �≤ S ∧X ≤ T ).

Let
P ⊆ S({S[1], . . . , S[n]}).
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Let

Pi,j = {X | (X ∈ P ) ∧X!(S[i], S[j]).

The string barcoding problem (SBP):

Instance: Given a set

{S[1], . . . , S[n]}

of strings over some finite alphabet Σ,

Q ⊆ S({S[1], . . . , S[n]}),

and positive integers d and r.

Question: Is there a set P ⊆ Q such that |P | ≤ d and |Pi,j| ≥ r, for any
i �= j, i, j ∈ {1, . . . , n}?

Note that SBP is NP-complete [17]. Encoding different hard problems as
instances of SAT and solving them with efficient satisfiability algorithms has
caused considerable interest (see e.g. [18] – [37]). In this paper, we consider
an approach to solve the SBP problem. Our approach is based on an explicit
reduction from the problem to the satisfiability problem.

Let Σ = {a1, a2, . . . , am}, Q = {Q[1], . . . , Q[k]}, q = maxk
i=1 |Q[i]|. We

assume that Q[i, j] is the jth letter of Q[i]. Let

ϕ[1] = ∧1≤i≤d,

1≤j≤q

∨0≤s≤m x[i, j, s],

ϕ[2] = ∧1≤i≤d,

1≤j≤q,

0≤s[1]<s[2]≤m

(¬x[i, j, s[1]] ∨ ¬x[i, j, s[2]]),

ϕ[3] = ∧1≤i≤d ∨1≤j≤k y[i, j],

ϕ[4] = ∧1≤i≤d,

1≤j[1]<j[2]≤k

(¬y[i, j[1]] ∨ ¬y[i, j[2]]),

ϕ[5] = ∧1≤i≤d,

1≤j≤k,

1≤t≤|Q[j]|,
0≤s≤m,Q[j,t]=as

(¬y[i, j] ∨ x[i, t, s]),

ϕ[6] = ∧1≤i≤d,

1≤j≤k,

|Q[j]|<t≤q

(¬y[i, j] ∨ x[i, t, 0]),

ψ[1] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r

∨1≤t≤d z[i, j, s, t],
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ψ[2] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t[1]<t[2]≤d

(¬z[i, j, s, t[1]] ∨ ¬z[i, j, s, t[2]]),

ψ[3] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤t≤d,

1≤s[1]<s[2]≤r

(¬z[i, j, s[1], t] ∨ ¬z[i, j, s[2], t]),

ψ[4] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤q

∨1≤p≤|S[i]| u[i, j, s, t, p],

ψ[5] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤q,

1≤p[1]<p[2]≤|S [i]|

(¬u[i, j, s, t, p[1]] ∨ ¬u[i, j, s, t, p[2]]),

ψ[6] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤d,

1≤p≤k,

1≤b[1]<b[2]≤|Q[p]|,
1≤c[2]≤c[1]≤|S [i]|

(¬z[i, j, s, t] ∨

¬y[t, p] ∨ ¬u[i, j, s, b[1], c[1]] ∨ ¬u[i, j, s, b[2], c[2]]),

ψ[7] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤q

∨1≤p≤|S[j]| v[i, j, s, t, p],

ψ[8] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤q,

1≤p[1]<p[2]≤|S [j]|

(¬v[i, j, s, t, p[1]] ∨ ¬v[i, j, s, t, p[2]]),
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ψ[9] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t≤d,

1≤p≤k,

1≤b[1]<b[2]≤|Q[p]|,
1≤c[2]≤c[1]≤|S [j]|

(¬z[i, j, s, t] ∨

¬y[t, p] ∨ ¬v[i, j, s, b[1], c[1]] ∨ ¬v[i, j, s, b[2], c[2]]),

τ [1] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t[1]≤d,

1≤t[2]≤k,

1≤t[3]≤|Q[t[2]]|,
1≤t[4]≤|S[i]|,
1≤t[5]≤m,

S[i,t[4]]=at[5]

(¬z[i, j, s, t[1]] ∨ ¬y[t[1], t[2]] ∨

¬w[i, j, s] ∨ ¬u[i, j, s, t[3], t[4]] ∨ x[t[1], t[3], t[5]]),

τ [2] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t[1]≤d,

1≤t[2]≤k,

1≤p[1]<...<p[|Q[t[2]]|]≤|S [j]|,
S[j,p[b]]=ac[b],

1≤c[b]≤m,

1≤b≤|Q[t[2]]|

(¬z[i, j, s, t[1]] ∨ ¬y[t[1], t[2]] ∨ ¬w[i, j, s] ∨

(∨1≤c[b]≤m,1≤b≤|Q[t[2]]|¬x[t[1], b, c[b]])),

τ [3] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t[1]≤d,

1≤t[2]≤k,

1≤t[3]≤|Q[t[2]]|,
1≤t[4]≤|S[j]|,
1≤t[5]≤m,

S[j,t[4]]=at[5]

(¬z[i, j, s, t[1]] ∨ ¬y[t[1], t[2]] ∨
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w[i, j, s] ∨ ¬v[i, j, s, t[3], t[4]] ∨ x[t[1], t[3], t[5]]),

τ [4] = ∧1≤i≤n,

1≤j≤n,

i�=j,

1≤s≤r,

1≤t[1]≤d,

1≤t[2]≤k,

1≤p[1]<...<p[|Q[t[2]]|]≤|S [i]|,
S[i,p[b]]=ac[b],

1≤c[b]≤m,

1≤b≤|Q[t[2]]|

(¬z[i, j, s, t[1]] ∨ ¬y[t[1], t[2]] ∨ w[i, j, s] ∨

(∨1≤c[b]≤m,1≤b≤|Q[t[2]]|¬x[t[1], b, c[b]])),

ξ = (∧6
i=1ϕ[i]) ∧ (∧9

i=1ψ[i]) ∧ (∧4
i=1τ [i]).

It is easy to check that there is a set P ⊆ Q such that |P | ≤ d and |Pi,j| ≥ r, for
any i �= j, i, j ∈ {1, . . . , n}, if and only if ξ is satisfiable. Clearly, ξ is a CNF.
So, ξ gives us an explicit reduction from SBP to SAT. Now, using standard
transformations (see e.g. [38]) we can obtain an explicit transformation ξ into
ζ such that ξ ⇔ ζ and ζ is a 3-CNF. It is easy to see that ζ gives us an explicit
reduction from SBP to 3SAT.

For computational experiments, we have designed a generator of natural
instances for SBP. We have considered our genetic algorithms OA[1] (see [39])
and OA[2] (see [40]) for SAT. We have used heterogeneous cluster. Each test
was runned on a cluster of at least 100 nodes. Selected experimental results
are given in Table 1.

time average max best

OA[1] 47.26 min 9.18 h 14.21 sec
OA[2] 58.13 min 4.71 h 2.83 min

Table 1: Experimental results for SBP.
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