Applied Mathematical Sciences, Vol. 7, 2013, no. 13, 615-622

The String Barcoding Problem

Anna Gorbenko
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com
Vladimir Popov
Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@usu.ru

Abstract

In this paper we consider an approach to solve the string barcoding problem. This approach is based on an explicit reduction from the problem to the satisfiability problem.

Keywords: string barcoding problem, satisfiability, NP-complete

Investigation of different regularities can be used to identify various important knowledge (see e.g. [1] - [15]). In particular, the string barcoding problem was proposed for rapid identification of unknown pathogens [16].

Given sequences S and T over some finite alphabet Σ. Let $S \leq T$ if and only if S is a subsequence of T. Let

$$
\mathcal{S}(\{S[1], \ldots, S[n]\})=\{X \mid \exists i \in\{1, \ldots, n\}(X \leq S[i])\}
$$

Let

$$
X!(S, T)
$$

if and only if

$$
(X \leq S \wedge X \not \leq T) \vee(X \not \leq S \wedge X \leq T) .
$$

Let

$$
P \subseteq \mathcal{S}(\{S[1], \ldots, S[n]\})
$$

Let

$$
P_{i, j}=\{X \mid(X \in P) \wedge X!(S[i], S[j]) .
$$

The string barcoding problem (SBP):
Instance: Given a set

$$
\{S[1], \ldots, S[n]\}
$$

of strings over some finite alphabet Σ,

$$
Q \subseteq \mathcal{S}(\{S[1], \ldots, S[n]\})
$$

and positive integers d and r.
Question: Is there a set $P \subseteq Q$ such that $|P| \leq d$ and $\left|P_{i, j}\right| \geq r$, for any $i \neq j, i, j \in\{1, \ldots, n\}$?

Note that SBP is NP-complete [17]. Encoding different hard problems as instances of SAT and solving them with efficient satisfiability algorithms has caused considerable interest (see e.g. [18] - [37]). In this paper, we consider an approach to solve the SBP problem. Our approach is based on an explicit reduction from the problem to the satisfiability problem.

Let $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}, Q=\{Q[1], \ldots, Q[k]\}, q=\max _{i=1}^{k}|Q[i]|$. We assume that $Q[i, j]$ is the j th letter of $Q[i]$. Let

$$
\begin{aligned}
& \varphi[1]=\wedge_{1 \leq i \leq d,} \vee_{0 \leq s \leq m} x[i, j, s], \\
& 1 \leq j \leq q \\
& \varphi[2]=\wedge_{1 \leq i \leq d,} \quad(\neg x[i, j, s[1]] \vee \neg x[i, j, s[2]]), \\
& 1 \leq j \leq q \text {, } \\
& 0 \leq s[1]<s[2] \leq m \\
& \varphi[3]=\wedge_{1 \leq i \leq d} \vee_{1 \leq j \leq k} y[i, j], \\
& \varphi[4]=\wedge_{1 \leq i \leq d,} \quad(\neg y[i, j[1]] \vee \neg y[i, j[2]]), \\
& 1 \leq j[1]<j[2] \leq k \\
& \varphi[5]=\wedge_{1 \leq i \leq d,} \quad(\neg y[i, j] \vee x[i, t, s]), \\
& 1 \leq j \leq k \text {, } \\
& 1 \leq t \leq|Q[j]| \text {, } \\
& 0 \leq s \leq m, Q[j, t]=a_{s} \\
& \varphi[6]=\wedge_{1 \leq i \leq d,} \quad(\neg y[i, j] \vee x[i, t, 0]), \\
& 1 \leq j \leq k \text {, } \\
& |Q[j]|<t \leq q \\
& \psi[1]=\wedge_{1 \leq i \leq n,} \vee_{1 \leq t \leq d} z[i, j, s, t], \\
& 1 \leq j \leq n \text {, } \\
& i \neq j \text {, } \\
& 1 \leq s \leq r
\end{aligned}
$$

```
\psi[2] = ^ ^1\leqi\leqn, }\quad(\negz[i,j,s,t[1]]\vee\negz[i,j,s,t[2]])
    1\leqj\leqn,
    i\not=j,
        1\leqs\leqr,
        1\leqt[1]<t[2]\leqd
\psi[3] = ^ ^ 1\leqi\leqn, }\quad(\negz[i,j,s[1],t]\vee\negz[i,j,s[2],t])
    1\leqj\leqn,
    i\not=j,
    1\leqt\leqd,
    1\leqs[1]<s[2]\leqr
\psi[4] = ^ ^ 1\leqi\leqn, \vee \vee 1\leqp\leq\S[i]|
    1\leqj\leqn,
        i\not=j,
        1\leqs\leqr,
        1\leqt\leqq
\psi[5] = ^ ^ \\leqi\leqn, }\quad(\negu[i,j,s,t,p[1]]\vee\negu[i,j,s,t,p[2]])
        1\leqj\leqn,
        i\not=j,
        1\leqs\leqr,
        1\leqt\leqq,
        1\leqp[1]<p[2]\leq|S[i]|
\psi[6] = ^ ^ 1\leqi\leqn, }\quad(\negz[i,j,s,t]
        1\leqj\leqn,
        i\not=j,
        1\leqs\leqr,
        1\leqt\leqd,
        1\leqp\leqk,
        1\leqb[1]<b[2]\leq|Q[p]|,
        1\leqc[2]\leqc[1]\leq\S[i]|
            \negy[t,p]\vee\negu[i,j,s,b[1],c[1]]\vee\negu[i,j,s,b[2],c[2]]),
\psi[7] = ^ ^ 1\leqi\leqn, \vee \ 1\leqp\leq\S[j]|}v[i,j,s,t,p]
    1\leqj\leqn,
        i\not=j,
        1\leqs\leqr,
        1\leqt\leqq
\psi[8]= ^ \ \\leqi\leqn, }\quad(\negv[i,j,s,t,p[1]]\vee\negv[i,j,s,t,p[2]])
        1\leqj\leqn,
        i\not=j,
        1\leqs\leqr,
        1\leqt\leqq,
        1\leqp[1]<p[2]\leq|S[j]
```

```
\psi[9] = ^ ^1\leqi\leqn, }\quad(\negz[i,j,s,t]
    1\leqj\leqn,
    i\not=j,
    1\leqs\leqr,
    1\leqt\leqd,
    1\leqp\leqk,
    1\leqb[1]<b[2]\leq\Q[p]|,
    1\leqc[2]\leqc[1]\leq\S[j]|
        \negy[t,p]\vee\negv[i,j,s,b[1],c[1]]\vee\negv[i,j,s,b[2],c[2]]),
\tau[1] = ^ ^1\leqi\leqn, }\quad(\negz[i,j,s,t[1]]\vee\negy[t[1],t[2]]
    1\leqj\leqn,
    i\not=j,
    1\leqs\leqr,
    1\leqt[1]\leqd,
    1\leqt[2]\leqk,
    1\leqt[3]\leq\Q[t[2]]],
    1\leqt[4]\leq\S[i]],
    1\leqt[5]\leqm,
    S[i,t[4]]=\mp@subsup{a}{t[5]}{}
        \negw[i,j,s]\vee\negu[i,j,s,t[3],t[4]]\veex[t[1],t[3],t[5]]),
\tau[2] = ^ ^1\leqi\leqn, }\quad(\negz[i,j,s,t[1]]\vee\negy[t[1],t[2]]\vee\negw[i,j,s]
    1\leqj\leqn,
    i\not=j,
    1\leqs\leqr,
    1\leqt[1]\leqd,
    1\leqt[2]\leqk,
    1\leqp[1]<\ldots<pp[|[t[2]]|]\leq\S[j]|,
    S[j,p[b]]=\mp@subsup{a}{c[b]}{[},
    1\leqc[b]\leqm,
    1\leqb\leq|Q[t[2]]
        (}\mp@subsup{\vee}{1\leqc[b]\leqm,1\leqb\leq\Q[t[2]]|}{}\negx[t[1],b,c[b]]))
\tau[3] = ^ ^1\leqi\leqn, }\quad(\negz[i,j,s,t[1]]\vee\negy[t[1],t[2]]
    1\leqj\leqn,
    i\not=j,
    1\leqs\leqr,
    1\leqt[1]\leqd,
    1\leqt[2]\leqk,
    1\leqt[3]\leq\Q[t[2]]],
    1\leqt[4]\leq\S[j]|,
    1\leqt[5]\leqm,
    S[j,t[4]]=\mp@subsup{a}{t[5]}{}
```

$$
\begin{aligned}
& w[i, j, s] \vee \neg v[i, j, s, t[3], t[4]] \vee x[t[1], t[3], t[5]]), \\
& \tau[4]=\wedge_{1 \leq i \leq n,} \\
& (\neg z[i, j, s, t[1]] \vee \neg y[t[1], t[2]] \vee w[i, j, s] \vee \\
& 1 \leq j \leq n \text {, } \\
& i \neq j \text {, } \\
& 1 \leq s \leq r \text {, } \\
& 1 \leq t[1] \leq d \text {, } \\
& 1 \leq t[2] \leq k \text {, } \\
& 1 \leq p[1]<\ldots<p[|Q[t[2]]|] \leq|S[i]|, \\
& S\left[i, p[b]=a_{c[b]},\right. \\
& 1 \leq c[b] \leq m \text {, } \\
& 1 \leq b \leq|Q[t[2]]| \\
& \left.\left(\vee_{1 \leq c[b] \leq m, 1 \leq b \leq|Q[t[2]]|} \neg x[t[1], b, c[b]]\right)\right) \text {, } \\
& \xi=\left(\wedge_{i=1}^{6} \varphi[i]\right) \wedge\left(\wedge_{i=1}^{9} \psi[i]\right) \wedge\left(\wedge_{i=1}^{4} \tau[i]\right) .
\end{aligned}
$$

It is easy to check that there is a set $P \subseteq Q$ such that $|P| \leq d$ and $\left|P_{i, j}\right| \geq r$, for any $i \neq j, i, j \in\{1, \ldots, n\}$, if and only if ξ is satisfiable. Clearly, ξ is a CNF. So, ξ gives us an explicit reduction from SBP to SAT. Now, using standard transformations (see e.g. [38]) we can obtain an explicit transformation ξ into ζ such that $\xi \Leftrightarrow \zeta$ and ζ is a 3-CNF. It is easy to see that ζ gives us an explicit reduction from SBP to 3 SAT .

For computational experiments, we have designed a generator of natural instances for SBP. We have considered our genetic algorithms OA [1] (see [39]) and OA[2] (see [40]) for SAT. We have used heterogeneous cluster. Each test was runned on a cluster of at least 100 nodes. Selected experimental results are given in Table 1.

time	average	\max	best
OA[1]	47.26 min	9.18 h	14.21 sec
OA[2]	58.13 min	4.71 h	2.83 min

Table 1: Experimental results for SBP.
ACKNOWLEDGEMENTS. The work was partially supported by Analytical Departmental Program "Developing the scientific potential of high school" 8.1616.2011.

References

[1] V. Yu. Popov, Computational complexity of problems related to DNA sequencing by hybridization, Doklady Mathematics, 72 (2005), 642-644.
[2] V. Popov, The approximate period problem for DNA alphabet, Theoretical Computer Science, 304 (2003), 443-447.
[3] V. Popov, The Approximate Period Problem, IAENG International Journal of Computer Science, 36 (2009), 268-274.
[4] V. Popov, Approximate Periods of Strings for Absolute Distances, Applied Mathematical Sciences, 6 (2012), 6713-6717.
[5] V. Popov, Multiple genome rearrangement by swaps and by element duplications, Theoretical Computer Science, 385 (2007), 115-126.
[6] V. Popov, Sorting by prefix reversals, IAENG International Journal of Applied Mathematics, 40 (2010), 247-250.
[7] A. Gorbenko and V. Popov, Robot Self-Awareness: Occam's Razor for Fluents, International Journal of Mathematical Analysis, 6 (2012), 14531455.
[8] A. Gorbenko and V. Popov, The Force Law Design of Artificial Physics Optimization for Robot Anticipation of Motion, Advanced Studies in Theoretical Physics, 6 (2012), 625-628.
[9] A. Gorbenko, V. Popov, and A. Sheka, Robot Self-Awareness: Exploration of Internal States, Applied Mathematical Sciences, 6 (2012), 675688.
[10] A. Gorbenko, V. Popov, and A. Sheka, Robot Self-Awareness: Temporal Relation Based Data Mining, Engineering Letters, 19 (2011), 169-178.
[11] A. Gorbenko and V. Popov, Robot Self-Awareness: Formulation of Hypotheses Based on the Discovered Regularities, Applied Mathematical Sciences, 6 (2012), 6583-6585.
[12] A. Gorbenko and V. Popov, Anticipation in Simple Robot Navigation and Finding Regularities, Applied Mathematical Sciences, 6 (2012), 6577-6581.
[13] A. Gorbenko and V. Popov, Robot Self-Awareness: Usage of Co-training for Distance Functions for Sequences of Images, Advanced Studies in Theoretical Physics, 6 (2012), 1243-1246.
[14] A. Gorbenko and V. Popov, Robot's Actions and Automatic Generation of Distance Functions for Sequences of Images, Advanced Studies in Theoretical Physics, 6 (2012), 1247-1251.
[15] A. Gorbenko and V. Popov, Anticipation in Simple Robot Navigation and Learning of Effects of Robot's Actions and Changes of the Environment, International Journal of Mathematical Analysis, 6 (2012), 2747-2751.
[16] S. Rash and D. Gusfield, String barcoding: uncovering optimal virus signatures, Proceedings of the sixth annual international conference on Computational biology, (2002), 254-261.
[17] M. Dalpasso, G. Lancia, and R. Rizzi, The String Barcoding Problem is NP-Hard, Lecture Notes in Computer Science, 3678 (2005), 88-96.
[18] A. Gorbenko and V. Popov, On the Problem of Sensor Placement, Advanced Studies in Theoretical Physics, 6 (2012), 1117-1120.
[19] A. Gorbenko and V. Popov, On the Longest Common Subsequence Problem, Applied Mathematical Sciences, 6 (2012), 5781-5787.
[20] A. Gorbenko and V. Popov, Computational Experiments for the Problem of Selection of a Minimal Set of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 5775-5780.
[21] A. Gorbenko and V. Popov, The Binary Paint Shop Problem, Applied Mathematical Sciences, 6 (2012), 4733-4735.
[22] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, The Problem of Sensor Placement, Advanced Studies in Theoretical Physics, 6 (2012), 965-967.
[23] A. Gorbenko, V. Popov, and A. Sheka, Localization on Discrete Grid Graphs, Lecture Notes in Electrical Engineering, 107 (2012), 971-978.
[24] A. Gorbenko and V. Popov, The Problem of Selection of a Minimal Set of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 4729-4732.
[25] A. Gorbenko, M. Mornev, V. Popov, and A. Sheka, The problem of sensor placement for triangulation-based localisation, International Journal of Automation and Control, 5 (2011), 245-253.
[26] A. Gorbenko and V. Popov, The Longest Common Parameterized Subsequence Problem, Applied Mathematical Sciences, 6 (2012), 2851-2855.
[27] A. Gorbenko and V. Popov, Programming for Modular Reconfigurable Robots, Programming and Computer Software, 38 (2012), 13-23.
[28] A. Gorbenko and V. Popov, On the Problem of Placement of Visual Landmarks, Applied Mathematical Sciences, 6 (2012), 689-696.
[29] A. Gorbenko, M. Mornev, and V. Popov, Planning a Typical Working Day for Indoor Service Robots, IAENG International Journal of Computer Science, 38 (2011), 176-182.
[30] A. Gorbenko and V. Popov, SAT Solvers for the Problem of Sensor Placement, Advanced Studies in Theoretical Physics, 6 (2012), 1235-1238.
[31] A. Gorbenko and V. Popov, Clustering Algorithm in Mobile Ad Hoc Networks, Advanced Studies in Theoretical Physics, 6 (2012), 1239-1242.
[32] A. Gorbenko and V. Popov, The Problem of Finding Two Edge-Disjoint Hamiltonian Cycles, Applied Mathematical Sciences, 6 (2012), 6563-6566.
[33] A. Gorbenko and V. Popov, Hamiltonian Alternating Cycles with Fixed Number of Color Appearances, Applied Mathematical Sciences, 6 (2012), 6729-6731.
[34] A. Gorbenko and V. Popov, Footstep Planning for Humanoid Robots, Applied Mathematical Sciences, 6 (2012), 6567-6571.
[35] A. Gorbenko and V. Popov, Multiple Occurrences Shortest Common Superstring Problem, Applied Mathematical Sciences, 6 (2012), 6573-6576.
[36] A. Gorbenko and V. Popov, The Far From Most String Problem, Applied Mathematical Sciences, 6 (2012), 6719-6724.
[37] A. Gorbenko and V. Popov, Multi-agent Path Planning, Applied Mathematical Sciences, 6 (2012), 6733-6737.
[38] A. Gorbenko and V. Popov, The c-Fragment Longest Arc-Preserving Common Subsequence Problem, IAENG International Journal of Computer Science, 39 (2012), 231-238.
[39] A. Gorbenko and V. Popov, The set of parameterized k-covers problem, Theoretical Computer Science, 423 (2012), 19-24.
[40] A. Gorbenko and V. Popov, Task-resource Scheduling Problem, International Journal of Automation and Computing, 9 (2012), 429-441.

Received: November 1, 2012

