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Abstract
The area of intelligent robotics is moving from the single robot con-
trol problem to that of controlling multiple robots operating together
and even collaborating in dynamic and unstructured intelligent environ-
ments. In such conditions, an intelligent robot control system is only
part of general intelligent system. In this paper, we consider a model of
such system.
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1 Introduction

Intelligent control systems has been extensively studied in robotics (see e.g.
[1, 2, 3]). It is well-known that the area of intelligent robotics is moving from
the single robot control problem to that of controlling multiple robots oper-
ating together and even collaborating in dynamic and unstructured intelligent
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environments (see e.g. [4, 5]). Therefore, it is natural to consider an intelligent
robot control system as a part of general intelligent system. In particular, for
mobile robots, we need to consider a module of onboard equipment of mo-
bile vehicles. Note that an usage of an unmanned vehicle is preferable during
solving many practical tasks. In some cases, even for low quality of motion
unmanned vehicles have an advantages, which is associated with impossibility
of presence of a human or danger for human life. Perhaps, the most simple and
inexpensive way for creation of unmanned vehicle is an usage of some onboard
equipment for traditional vehicles that provides a remote operator control sys-
tem for such vehicles. However, in many cases, full transference of control to
the operator is impossible. For many applications, there is a large number
of different problems with remote operator control systems. In particular, we
can mention problems with connections: noise, delays, active interferences. It
is clear that partial or full disconnection does not should lead to loss of con-
trollability. We can not allow unpredictable behaviors of vehicles. For this
purposes, a system of intelligent algorithms is needed. In particular, such sys-
tem can allow us to obtain some local control system during communication
failures. It is clear that we can use some similar ideas for a module of onboard
equipment of traditional vehicles and onboard modules of robots in intelligent
environments. We use this approach to consider a general model of a module
of onboard equipment of mobile vehicles.

2 Measurement of Noises

It should be noted that a system of intelligent algorithms can be used in
different modes according to traffic capacity of data channel and levels of
noises in it. To determine correct values of these parameters and to measure
degrees of reliance of incoming signals it is necessary a separate intelligent
algorithm. Functioning of this algorithm is based on analysis of time series by
combinatorial algorithms and intelligent system of prediction of anomalies in
incoming data.

3 Information about Environment

Measurements of the traffic capacity of a data channel, levels of noises, and
degrees of the reliance of control signals allow us to estimate a proper level of
the vehicle control autonomy. However, these data are insufficient to choose
a final model of an intelligent module. The local control system should have
some information about environment. Therefore, the system of algorithms of
onboard equipment have subsystems for gathering and analysis of sensor data.

It should be noted that sensor data transmitted to operator can become
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unavailable. On the other hand, it is economically feasible to store all sen-
sor data on vehicle board. Therefore, a specialized intelligent system in real
time analyzes sensor data and performs preparation of onboard information
during the functioning of vehicle. This information can be used in the case of
disconnection.

4 Selection of Simple Intelligent Algorithms

According to selected autonomy mode an onboard navigation system uses se-
lection of simple intelligent algorithms. In particular the system of such algo-
rithms includes

e installation of the route from point to point;
e pursuit of object;

e avoidance of objects;

e object surveillance;

e maintenance of distance;

e maintenance of formation with other vehicles;
e rounding of obstacles;

e collision avoidance;

e installation of route for independent return to base.

5 Module of Self-Awareness

In parallel with the system of simple navigation algorithms operates a module
of self-awareness of vehicle control system (see e.g. [6] — [10]) and anticipation
of simple facts (see e.g. [11] — [14]). This system should perform following
tasks:

e anticipation of different dangers;
e anticipation of changes in the environment;
e malfunction detection of vehicle.

Moreover, a module of self-awareness with module of simple algorithms
implements task of construction of more complex navigation algorithms. In
particular, we can mention such algorithms as
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e search of safe shelter;
e finding of advantageous point for surveillance;

e movement through rugged terrain and environment that is dangerous for
navigation.

Another important function is estimating of efficiency of current algorithms
of navigation. This function is performed by module of self-awareness. In this
case, if some algorithm of navigation will be recognized as ineffective, then
a module of self-awareness generates a request for later regeneration of this
algorithm.

It is should to be noted that regeneration of navigation algorithms is an
expensive task from the computational point of view. Therefore, it is prefer-
able to transmit a request for regeneration to the operator on the base. If a
connection with the operator is impossible, then a module of self-awareness
puts the control system to the mode of reduced operability for releasing of
computational resources.

6 Generating System

There are three problems that are associated with the development of naviga-
tion systems,

e automatization of creation of simple navigation systems;
e automatization of method of selection of appropriate navigation system;

e accumulation and generalization of knowledge for facilitation of transi-
tion from construction of simplest navigation systems to more complex.

A natural way to solve mentioned above problems is a creation of some
generating system (see e.g. [15]) which is able to generate modules of navi-
gation by some data stream automatically, construct from these modules new
navigation systems and generate control modules, providing a correct selec-
tion of navigation system for the specific task. Herewith such system can have
knowledge base for storing statistical information. Generation of new modules
and navigation systems on the basis of existing ones is a classical genetic pro-
gramming task. In the simplest case, for the same type of navigation modules
it is possible to construct a generalizing module for account of simultaneously
connected initial modules.

Direct usage of the simultaneous connection of initial modules leads to a
successive increase of sizes of generated modules, and in the end to the decrease
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of its computational efficiency. Therefore, for efficient functioning of generating
system a library of specialized algorithms is needed. These algorithms should
provide a maintenance of computational efficiency of constructed modules. In
particular, this library should contain

e minimization algorithms (e.g. simulated annealing, construct minimal
automata, algorithm of minimization of neural network through learning
a network of specified architecture, different methods of extraction of
common part);

e algorithms of intelligent parallelization of neural networks and genetic
algorithms;

e algorithms of transformation and embedding methods (e.g. methods
of construction a neural networks by genetic algorithms, algorithms of
embedding of finite state automaton in neural networks, methods of con-
struction a genetic algorithms over some specified grammar etc.).

In the process, navigation system of vehicle keeps statistics of incoming in-
formation. Herewith functioning is considered within the framework of model
“onboard computer — control computer — supercomputer”. Thus, generation
of new navigation modules occurs on supercomputer and not in the module of
onboard equipment. In this case, transmission of tasks to a supercomputer,
keeping statistics, performing of auxiliary algorithms redistribution and pro-
cessing of statistical data is implemented on control computer. This makes it
possible to significantly reduce cost of module of onboard equipment, herewith
all computations are performed on supercomputer. Thus, if it is necessary to
change navigation algorithm or operating conditions of a system are changed,
the system sends a signal for regeneration of algorithm. A supercomputer im-
plements analysis of current conditions and generates an efficient algorithm.
Then it sends the new algorithm to a vehicle.

7 Autonomy of a Vehicle

One of the important elements in the remote control is an autonomy of a
vehicle. Naturally, requirements to a vehicle control system are determined
by its architecture, environment, the range of solved task, and an autonomy
mode, in which operates the vehicle. An autonomy mode is a some state of
robot control system, which shows how the robot depends from human or other
robot during performing the task.

When robot performs under a human command or a human control, there
are several kinds of control that depend from degree of human participation in
control. Among them, three main types can be allocated. First is described full
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autonomy of system work, when robot performs a some specified task without
any guidance. The next type involves semiautonomous robots, that is a robot
partially depends from a human control. In this case, a human can have only
limited set of commands. Last type is a mode in which robot performs actions
under a full human control.

It is important to note that different algorithms can be used depending
from the level of autonomy. This algorithms provide to a vehicle more or less
freedom in choice of action. For example, decision making during navigation
in typical simple conditions can be fully transferred on the module of onboard
equipment. From selected autonomy mode can also depend a mode of com-
putational resources distribution and different kinds of treatment of sensor
information. For example, in the case of disconnection with a control com-
puter a vehicle can independently generate some simple navigation modules
on board. Otherwise in complex undefined situations the vehicle can wait
instructions from control center or independently return to base.

8 Correspondence Between the System of Self-
Awareness and the Navigation System

It is clear that we can consider a correspondence between the navigation sys-
tem and the self-awareness system. For example, from the one hand, a vehi-
cle should follow the instructions of navigation algorithms, and not take into
account own knowledge about what the vehicle should do. From the other
hand, it is possible that following to the instructions of navigation algorithms
is disadvantageously for the vehicle, and it should intensify a self-awareness
system. For example, it is possible that a some heavy object fell into the ve-
hicle. When this happens, the vehicle can conclude about slipping of wheels
and tracks herewith onboard camera captures the same visual picture, which
is almost unchanged, and process of motion continues. In this case, the vehicle
can for some time not accept instructions from navigation algorithm and can
try independently get out from under the object, analyzing dependence of own
motions from sensor data.

9 The General System of Motion Planning

The general system of motion planning can be constructed from external and
internal modules. To create the external module of motion planning we can
use system of multi-agent path planning [16] and system of reconfiguration
planning for modular robots [1]. These algorithms can be used as a base part
of module. To improve the module we can use self-learning system that utilizes
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the module of safe planning [2] and the model of Hamiltonian path with fixed
number of color repetitions [3].

Internal module needed for single robot motion planning. It is natural to
consider motion planning for humanoid robots separately (see e.g. [17, 18]).
For mobile robots, the problem of motion planning can be considered as the
problem of generation of sequences of motor primitives. To solve this problem
we can use different string problems and algorithms for these problems (see
[19] - [32]). To improve the internal module we can use the model of one shot
learning by imitation.

10 One Shot Learning by Imitation and Fea-
ture Distortion Warping

An algorithm for one shot learning by imitation was proposed in [33] for hu-
manoid robots. It is clear that the same idea can be applied to any mo-
bile robot. This algorithm creates the task path from the cloud of possible
waypoints using minimum-energy strategy. In particular, the idea of feature
distortion warping is used.

Following [33], we can define the k& Cartesian coordinates a; from the tem-
plate as the invariant control points P and the corresponding invariant control
points a; in the task P’. Note that if we can define each mapping from P to
P’ as a function f, to minimize the distortion of feature in space is equivalent
to minimize the following energy function [34]:

k
E= 3 |[P, ~ P, || +AE,
w=1
where

By = | [ (f+ 28+ 1}, drdy.

A is the regularization parameter.

Note that the regularization parameter A is a trade-off between the exact
matching of points and the smoothness. This parameter is particularly useful
in the presence of a noise. It is clear that the quality of the algorithm is
critically dependent on the values of the regularization parameter. However,
the exact way to calculate values of A\ is not obvious.

It is natural to consider different intelligent algorithms for the prediction
values of the regularization parameter. Since A is useful in the presence of
a noise, we can also consider different Kalman filters. In our computational
experiments, we consider genetic algorithms (GA), multilayer perceptron net-
works (MPN) with gradient learning algorithm, recurrent neural networks
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(RN) gradient learning algorithm, 4-order Runge Kutta neural networks (see
e.g. [35]), unscented Kalman filters (UKF) (see e.g. [36]), extended Kalman fil-
ters (EKF) (see e.g. [36]), adaptive unscented Kalman filters (AUKF) (see e.g.
[36]), adaptive neuro-fuzzy extended Kalman filter (ANFEKF) (see e.g. [37]).
Runge Kutta neural networks we consider for multilayer perceptron networks
with the gradient learning algorithm (RKN-P-GLA) (see [35]), the nonlinear
recursive least square learning algorithm (RKN-P-NLSLA) (see [35]), the zero-
order nonlinear recursive least square learning algorithm (RKN-P-0-NLSLA)
(see [35]), the first-order nonlinear recursive least square learning algorithm
(RKN-P-1-NLSLA) (see [35]) and for recurrent neural networks with the gra-
dient learning algorithm (RKN-R-GLA) (see [35]), the nonlinear recursive least
square learning algorithm (RKN-R-NLSLA) (see [35]), the zero-order nonlin-
ear recursive least square learning algorithm (RKN-R-0-NLSLA) (see [35]),
the first-order nonlinear recursive least square learning algorithm (RKN-R-1-
NLSLA) (see [35]).
Let

M = {my | my = (z;,3),1 <1< p}

be the set of spatial feature points that represents the template path. Let

Mo ={m] | m} = (7,9),1 <1< p}

be the set of spatial feature points that represents the path for A = const. Let

My = {mi* | mi* = (27, y"),1 <1< p}

be the set of spatial feature points that represents the path for A controlled by
the algorithm A. It is clear that we can use the average value avrV[A] of

= e (2t = w)® + 50y — w)?

i (2] — @) + () — w)?

as a measure of the quality of the algorithm A. Selected experimental results
are given in Tab. 1.

Vil =

11 SAT Solvers

It is well-known that usage of efficient satisfiability algorithms and encoding
different hard problems as instances of satisfiability has caused considerable
interest recently (see e.g. [38, 39, 40, 41]). However, most of them require
the use of a supercomputer. For the module of onboard equipment of mo-
bile vehicles we need a SAT-solver that requires significantly less computing
resources. In particular, GSAT is a well-known satisfiability algorithm [42]
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P 102 10° 107 10°
GA 0271 0.306 0.324 0.019
MPN 0.442 0.439 0.431 0.443
RN 0.445 0.426 0.411 0.398
UKF 0.892 0.843 0.813 0.768
EKF 0.724 0.714 0.699 0.691
AUKF 0.753 0.704 0.641 0.521
ANFEKF 0.762 0.695 0.633 0.508
RKN-P-GLA 0.322 0.165 0.139 0.118

RKN-P-NLSLA 0.314 0.158 0.129 0.107
RKN-P-0O-NLSLA | 0.316 0.161 0.132 0.104
RKN-P-1-NLSLA | 0.296 0.144 0.111 0.097
RKN-R-GLA 0.196 0.114 0.091 0.083
RKN-R-NLSLA 0.175 0.099 0.081 0.066
RKN-R-0-NLSLA | 0.173 0.093 0.077 0.061
RKN-R-1-NLSLA | 0.171 0.078 0.064 0.059

Table 1: The dependence of the quality of different algorithms from the number
p of spatial feature points.

(see also [43, 44]). This algorithm is extensively used for the solution of the
satisfiability problem. It should be noted that GSAT applies only to clausal
formulas. The notion of score plays a key role in GSAT.

Note that some modification of the score function are considered. However,
usually, the score function is the number of clauses of formula which are falsified
by the truth assignment (see e.g. [45]). A modification of GSAT with adaptive
score function was proposed in [44]. In particular, a genetic algorithm was
used for prediction of values of score function. In this paper we consider a new
modification of GSAT. In particular, we use Runge Kutta neural networks (see
e.g. [35]) for the calculation of values of the adaptive score function.

Let f(z[1],..., z[n]) be a CNF. Let T" be a truth assignment for the variables
of f. Let #occ(k, f, z[i]) be the number of positive occurrences of z[i] in clauses
of type x1 V...V ay, #occ(k, f, —z[i]) be the number of occurrences of —z[i] in
clauses of type x1 V...V ;. Let S(T, f) be the set of clauses of f which are
falsified by 7. Following [33], we can assume that

score(T, f) :le\/...\/xPES(T,f) D 1<i<q,1<j<p (a(FFoce(i, f, l’j))+
B(#occ(i, f, ~x;))).

Also, following [44], we can use a genetic algorithm for prediction of values of
a and .
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It is clear that we can consider a and 3 as functions of time. In this case, we
can consider «(t) and f(t) as dynamical systems o/ = F/(a,t) and 5/ = G(f,t)
for some unknown functions F' and G.

Clearly, a genetic algorithm for prediction of values of a and 3 can be used
to calculate initial conditions a(t) = o and ((t) = Fy.

Let a(t) be a solution trajectory of the system o/ = F(a,t). To predict
a(t), we consider the 4-order Runge Kutta neural network that described by

alt+1) = a(t) + gh(kal0] + 2ka[1] + 260[2] + Kal3),

where

ka[0] = No(a(t); wa);

ko[l] = Ny(alt) + %haka[(]]; Wa);

@mzmm@+%m%mwﬁ

kol3] = No(a(t) + hokal3]; wa),

where the neural network N, (y,w,), with input y and weights w,, is the
multilayer perceptron network, h, is the time step (see [35]). Similarly, let
b(t) be a solution trajectory of the system 5 = G(3,t). To predict b(t), we
consider the 4-order Runge Kutta neural network that described by

1
b(t+1)=0b(t) + éh(k‘g[O] + 2kg[1] + 2ks[2] + ks[3]),
where
ks[0] = Na(b(t); wp);
1
ks[1] = Na(b(t) + 5 hskis[0]; ws);
1
ks[2] = Na(b(t) + S hsks(L]; ws);
ks[3] = Na(b(t) + hgks(3]; wg),
where the neural network Ng(y,wgs), with input y and weights wg, is the

multilayer perceptron network, hg is the time step. For 4-order Runge Kutta
neural networks, we consider a gradient learning algorithm.
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In our experiments, we consider GSAT with score function score(T, f)
(GSAT-ASF) and GSAT with score function

ﬁ(#occ( _'x])))a

Score(T, f,t+1) = p v vaesr,f) Lici<gr<i<p  ((alt) + éh(k‘a[(}] +
2ko[1] + 2k, [2] +
al3]) (occ(i, £,27)) +
(b <t>+%h< kal0] +
2l 2402
kalB]) (Hoceli, £, ;)

(GSAT-ASF-RK) for 3-CNFs. Selected experimental results are given in Ta-
bles 2 and 3.

G=10" G=10° G=10°
GSAT-ASF 91 % 92 % 93 %
GSAT-ASF-RK | 87 % 90 % 92 %

Table 2: A number of solved formulas for GSAT-ASF and GSAT-ASF-RK
where G is a number of generations of genetic algorithm.

G=10" G=10° G=10°
Tesar—asr—rK | g4 O 33 % 14 %

TgsAT-ASF

Table 3: The performance of GSAT-ASF and GSAT-ASF-RK where G is a
number of generations of genetic algorithm, Tgsar_asr is the average time
of solution of GSAT-ASF, Tgsar—_asr—ri is the average time of solution of
GSAT-ASF-RK.
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