Account of Non-Diagonal d-d-Electron Couplings in Fe-Co Liquid Alloy

Nikolay Dubinin1,2

1Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
2Institute of Metallurgy of the Ural Branch of the Russian Academy of Sciences, Amundsen st. 101, 620016 Ekaterinburg, Russia
ned67@mail.ru

Abstract

The partial Wills-Harrison effective pair potentials in liquid equiatomic Fe-Co alloy are considered. It is shown that the account of the non-diagonal d-d couplings between electrons leads to the same changes in characteristics of the pair-potential first minimum as in the case of the pure transition metals.

Keywords: liquid Fe-Co alloy, transition metal, Wills-Harrison model, d-state coupling

The Wills-Harrison [1] partial effective pair potentials, $\varphi_{WH}(r)$, between atoms Fe and Co in equiatomic Fe-Co alloy at $T=1863$K are calculated at different values of the suggested p probability that not only diagonal d-d couplings are possible at condition that all d-d couplings (diagonal and non-diagonal) are equiprobable in this case.

Following [3] we use the local Bretonnet-Silbert (BS) model pseudopotential [4] extended to binary alloys in [5] for description the s-electron contribution, $\varphi_{s}(r)$, to $\varphi_{WH}(r)$.

As follows from the previous paper, $\varphi_{WH}(r) = \varphi_{s}(r)$ at $p = 1$. It denotes here that $\varphi_{WH}(r) = \varphi_{BS}(r)$ at $p = 1$.

It is clear from Fig.1 that changing p from 0 up to 0.5 slightly influences the depth and position of the first minimum of $\varphi_{WH}(r)$. At the same time, these characteristics become strong different at $p = 1$. Such a tendency is the same as it
was observed in the case of pure transition metals [2].

![Graph showing \(\varphi_{\text{WH}}(r) \) between atoms Fe and Co in liquid equiatomic Fe-Co alloy.
\(p = 0 \) – solid line; \(p = 0.5 \) – dotted line; \(p = 1 \) – dashed-dotted line.]

Figure 1. \(\varphi_{\text{WH}}(r) \) between atoms Fe and Co in liquid equiatomic Fe-Co alloy.

References

Received: April 30, 2013