The Main Characteristics of the Wills-Harrison Effective Pair Potential in Liquid Fe

Natalia D. Vatolina

Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia
ndvatolina@gmail.com

Copyright © 2013 Natalia D. Vatolina. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

It is found that the position of the first minimum of the Wills-Harrison effective pair potential in liquid Fe begins to shift significantly to the right-hand side when the \(d-d \)-non-diagonal coupling begins to predominate in the metal under consideration.

Keywords: Transition metal, Wills-Harrison pair potential, \(d \)-state coupling

In [1] the Wills-Harrison (WH) model [2] was corrected by means the introduction the probability \(p \) that all 25 \(d-d \) couplings between two different atoms are equiprobable and probability \((1 - p) \) that only 5 equiprobable diagonal couplings are possible.

Here, we consider how the magnitude \(p \) influences the position, \(r_{\text{min}} \), and the magnitude of the first minimum of the WH effective pair potential, \(\phi_{\text{WH}}(r) \), in liquid Fe.

We use the local Bretonnet-Silbert (BS) model pseudopotential [3] for description the \(s \)-electron contribution to \(\phi_{\text{WH}}(r) \). Input data (WH and BS parameters and the experimental mean atomic volume, \(\Omega \)) are listed in Table 1.

Figure 2 shows that magnitude of the first minimum quite monotonously increases with increasing \(p \) for pair potential under consideration. At the same time, as follows from Figure 1, the first-minimum position begins to increase harshly from \(p = 0.6 \) approximately. Since the portion of the non-diagonal \(d-d \) couplings in a metal is equal to \(0.8p \), it denotes that significant shift of the
\(\varphi_{W_H}(r) \) first minimum to the right is occurred when the non-diagonal coupling begins to predominate in liquid Fe.

Figure 1. \(r_{\min} \) of \(\varphi_{W_H}(r) \) in liquid Fe at different \(p \) (\(T=1863 \)K).

Figure 2. \(\varphi_{W_H}(r_{\min}) \) in liquid Fe at different \(p \) (\(T=1863 \)K).
Table 1. Input data for calculation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.512</td>
<td>1.4</td>
<td>6.6</td>
<td>1.54</td>
<td>0.363</td>
<td>89.29</td>
</tr>
</tbody>
</table>

References

Received: June 22, 2013