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In tro d u ctio n

Let
A 2 =  (a, b I aba =  a 2 =  a, bab =  6, b2 =  0) =  {a, 6, a6, 6a, 0}

be the 5-element idem potent-generated 0-simple semigroup. The semigroup A2 as 
well as the 5-element B randt semigroup

B 2 =  (c, d I cdc =  c, dcd =  d, c2 =  d2 =  0) =  {c, d, cd, dc, 0}

plays a distinguished role in the theory of semigroups and especially in the theory 
of semigroup varieties (see, for instance, a discussion in [1, Sections A5, A6, A15]). 
We denote by A 2 and B 2 the varieties generated by respectively A 2 and i?2 - 
It was observed by N. R. Reilly (unpublished) th a t the variety A 2 has a unique 
maximal subvariety which we denote by A 2 . Clearly, A 2 can be thought of as 
the largest subvariety of A 2 th a t does not contain the semigroup A 2 . Similarly, 
the largest subvariety of A 2 th a t does not contain the semigroup B 2 is denoted 
by В 2 (the existence of such a largest subvariety in each variety of periodic semi­
groups follows from a general result by E. V. Sukhanov, see [2, Theorem  1]). Recently 
E. W. H. Lee [3, Question 5.3] has asked whether or not

A 2 =  B 2 V B 2 (1)

where the right hand side means the join of B 2 and B 2 in the lattice of semigroup 
varieties. In the present note we answer this question in the affirmative.

1. P re lim in aries

We adopt the standard  terminology and notation of semigroup theory (see [1, 
4-6]) and universal algebra (cf. [7]). For the reader’s convenience, we recall a few 
basic definitions related to words.
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We fix a countably infinite set X (the alphabet) whose elements are referred to 
as letters. As usual, X+ is the free semigroup over X and X* =  X+ U {1} is the 
free monoid over X . We call elements of X+ words and denote the equality relation 
on X+ by = . If u ,v  are words, we say th a t u occurs in v or u is a factor  in v 
whenever there exist v ' , v n G X* such th a t v can be decomposed as v =  v 'uv". For 
a word w G X+ we denote by alph(tc) the set of letters from X th a t occur in w . If 
w =  X1X2 • • • x n where aq, X2 , • • • 5 %n are letters in a lph (tc), then  the num ber n  is 
called the length of the word w and is denoted by \w\.

Our proof of the equality (1) is based on a graph-theoretical description of the 
identities holding in A 2 . This description is well known. It is often a ttrib u ted  to 
G. M ashevitsky [8] (see, for instance, [3] or [9]) even though the paper [8] does not 
deal w ith the identities of A 2 at all. Apparently, this m istake originates from an 
erroneous reference in the survey paper [10]. In fact, the description has been found 
by A. Trahtm an, see his preprint [11].

Given a word w G X+ , we assign it a directed graph G(w) whose vertex set is 
alph(tc) and whose edges correspond to factors of length 2 in w as follows: G(w) 
has a directed edge from x  to y (x, y  G alph(tc)) if and only if xy  appears as a 
factor in w.  We will distinguish two (not necessarily different) vertices in G (w ): 
the initial vertex, th a t is the first letter of w , and the final vertex, th a t is the last 
letter of w . Then the word w can be thought of as a walk through the graph G(w) 
th a t starts  at the initial vertex, ends at the final vertex and traverses each edge of 
G(w) (some of the edges can be traversed more than  once). Fig. 1 shows the graph

1

Fig. 1: The graph of the word x 2yzxzy2z t2 and the corresponding walk

G(w) for the word w =  x 2y z x z y 2z t 2 . The ingoing and the outgoing m arks show 
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respectively the initial and the final vertices of the graph. On Fig. 1 each edge of the 
graph is labelled by the number[s] corresponding to the occurrence[s] of the edge in 
the walk induced by the word w.  We stress tha t, in contrast to the vertex names 
and the ingoing/outgoing marks, these labels are not considered as a part of the 
da ta  making the graph G (w ) . Therefore the graph does not determ ine the word w: 
for instance, as the reader can easily check, the word x y 3z y z x 2z y z t 3 has exactly the 
same graph (but corresponds to a different walk through it, see Fig. 2).

8

Fig. 2: Another walk through the graph of Fig. 1

Let u, v E be words and S  a semigroup. We say th a t S  satisfies the identity 
u =  v (or th a t the identity u =  v holds in S ) if mp = vip for every homomorphism 
tp : £ +  S .

P r o p o sitio n  1 (A .T rahtm an, [11]). The semigroup A 2 satisfies the identity u =  v 
if  and only if  the graphs G (u ) and G(v) are equal.

A system S of identities is said to be an identity basis for a semigroup variety V  if 
V  consists precisely of semigroups which satisfy all identities in S . In this situation
we also say th a t V  is defined by S . For the sake of completeness, we list the identity
bases for the varieties th a t play a m ajor role in this note.

P r o p o sitio n  2. (i) The variety A 2  is defined by the identities

x 2 =  x 3, x y x  =  x y x y x , x y x z x  =  xzxyx.  (2)

(ii) The variety B 2 is defined by the identities

2 3 2 2 2 2 /o\x  =  x  , x y x  =  x y x y x , X y  =  y X . {6)
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(iii) The variety A  2 is defined by the identities

X  =  x  , xyx =  x y x y x , x y x z x  =  x z x y x , X  y  X  = x  y x  . (4)

(iv) T/ie variety B 2 «5 defined by the identities

x 2 =  x 3, xyx =  x y x y x  =  x y 2 x , x y x z x  =  x z x y x .  (5)

P ro o f . The identity bases (2) for A 2 and (3) for B 2 were found by A. Trahtm an, 
see respectively [11] and [12]. The bases (4) for A 2 and (5) for B 2 were discovered 
by E. W. H .Lee [3, Theorems 2.7 and 3.6] via direct m anipulations w ith identities. 
We outline here an alternative (and calculation-free) way to obtain the basis (5) 
which is most im portant for the proof of our m ain result.

Recall th a t B 2 is the largest subvariety of A 2 th a t does not include the semi­
group B 2 • Clearly, B 2 satisfies the identities (2). By [2, Theorem  1] B 2 satisfies 
also the identity

( x y ) 2 ( y x ) 2 ( x y ) 2 =  ( x y ) 2 .

M ultiplying through on the right by x , we obtain the identity

x y x y 2 x y x 2 y x y x  =  x y x y x .  (6)

From Proposition 1 we see th a t the left hand side of (6) is equal in A 2 to the word 
x 2 y 2 x 2 while the right hand side reduces to x y x .  Thus, B 2 satisfies the identity

x 2 y 2 x 2 =  x y x .  (7)

Applying (7) to the word x y 2 x , we obtain

x y 2 x  =  x 2 ( y 2 ) 2 x 2 =  x 2 y 2 x 2 =  x y x .

We conclude th a t the identity
x y 2 x  =  x y x  (8)

holds in B 2 . Since adding the identity (8) to the system (2) gives exactly the identity 
system (5), the variety B 2 is contained in the variety defined by the la tte r system. 
Conversely, the variety defined by (5) is a subvariety of A 2 and does not include B 2 

(because the identity (8) fails in B 2 ). Therefore, this variety is contained in B 2 . 
Thus, B 2 is indeed defined by the identities (5).

A word w E of length at least 2 is said to be connected if its directed graph 
G(w) is strongly connected. In fact, this concept is known in the literature, although 
under a different name. In [14] G. M ashevitsky introduced the following definition: 
a word w E of length at least 2 is said to be covered by cycles if each of its
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factor of length 2 occurs in a factor of w th a t starts  and ends w ith the same letter. 
In the language of the graph G (w ) , this property means th a t each edge x  —>► y  of 
G(w) belongs to a directed cycle (namely, to the walk induced by a factor of w th a t 
s tarts  and ends w ith the same letter and contains x y ) .  It is one of the basic facts of 
the theory of directed graphs (cf. [13, Theorem  8.1.5]) th a t such a graph is strongly 
connected if and only if each its edge belongs to a directed cycle.

Our next proposition reveals the semigroup meaning of the concept of a con­
nected word. Recall th a t an element s of a semigroup S  is regular in S  if there 
exists «s' E S  such th a t «s«s'«s =  s .

P r o p o sitio n  3. A word w E is connected if  and only if  for every semigroup 
S  E A 2 and for every homomorphism p  : S + —y S  the element w p  is regular in S .

P roof. First suppose th a t w is a connected word, and let x  and y be respectively 
the first and the last letters of w (we do not assume th a t x  ^  y).  Since the graph 
G(w) is strongly connected, there is a walk

y  =  Xq —y X \  —y • • • —y X n =  X.

Let u =  x \  • • • x n- \ w x \  • • • x n- i , then  the graphs of the words w and wuw  are 
equal. Here if n  =  0 (which means th a t y =  x )  or n  =  1, the product x \  • • • x n- \  
in terprets as the em pty word. By Proposition 1 w ^  =  (w u w where 
V’ denotes the canonical homomorphism from S + to F ^ (A 2 ), the free semigroup 
of the variety A 2 over the alphabet S . Thus, wip is regular in F ^ (A 2 ) and, since 
every homomorphism p  : —>► S  factors through ^ , the element w p  is regular
in S .

Now suppose th a t w is not connected. This means th a t the graph G(w) contains
a bridge whence the walk induced by w splits into the part preceding the bridge,
the bridge, and the part following the bridge. (The reader may see such a situation 
on Fig. 1 or 2 where the edge z —y> t forms a bridge.) Accordingly, w decomposes 
as w = w'w"  where the words w f and w" correspond to the parts of the walk 
respectively before and after the bridge. Clearly, a lph(tc ')nalph(tc") =  0 .  Consider 
the subsemigroup Aq =  {6, 6a, a6, 0} of A 2 and let the homomorphism (  : £ + —y Aq 
be defined as follows:

{ba if x  E alph(tc'), 

ab otherwise.

Then using the defining relations of the semigroup A 2 , one readily calculates th a t 

w (  =  w '(  • w "(  =  (ba)\u\ • (ab)\v\ =  ba • ab =  bab =  b.

However, it is easy to check th a t b is not regular in A q .
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Remark. The fact tha t, under the canonical homomorphism S + —>► F ^ (A 2 ), every 
word covered by cycles maps onto a regular element of F ^ ( A 2 ) is a partial case of a 
similar result claimed by G. M ashevitsky in [14, Lemma 6 ], see also [15, Lemma 7]. 
Since then, this result has been used (with a reference to [14]) in several im portant 
papers including, for instance, [16] and [17]. However, its proof in [14] contains a 
fatal flaw (and so does the translation  of the proof into English published in [15]). 
Namely, in [14] Lemma 6  is deduced from Lemma 5 which claims th a t every word 
u covered by cycles can be transform ed modulo certain identities to a word of the 
form z\U\Z\ • • • ZkUfrZk where 2 7 , . . . ,  27  are letters and 2^+ 1  E alph(r^) for all i =  
1 , . . . ,  k — 1 provided th a t k > 1. In order to justify  the la tte r claim, M ashevitsky 
uses induction on | alph('u)! bu t in the course of the proof he illegitim ately applies 
the induction assum ption to a factor of u th a t generally speaking is not covered by 
cycles. The word u =  x y x z y  can be used as a concrete counter example showing 
th a t the argum ent from [14] does not work: here the induction assum ption should 
have been applied to the factor zy  which is certainly not covered by cycles.

In fact, a correct proof of the described interm ediate claim can be achieved by 
simple graph-theoretic means, and moreover, the claim can be avoided because we 
can prove Lemma 6  of [14] by a suitable m odification of reasoning applied in the 
above proof of Proposition 3. Thus, results of [16] and [17] th a t rely on the lemma 
are correct.

Proposition 3 also allows us to give a semigroup proof of the following combina­
torial property:

C orollary  4. I f  a word w E is connected, then for every homomorphism  7  : 
E + —>► E + the word w^y is connected.

P roof. Take an arb itrary  semigroup S  E A 2  and an a rb itrary  homomorphism 
ip : E + —>► S . Then (wj)cp =  w^cp)  is regular by the “only if” part of Proposition 3 
whence the word w j  is connected by the “if” part of the proposition.

We will utilize the following partial case of an im portant lemma due to S. Kub- 
lanovskii, see [16, Lemma 3.2]:

P r o p o sitio n  5 (S. Kublanovskii, [16]). For any semigroup S  E A 2 and distinct 
regular elements s ,s '  E S  there exists a completely 0 -simple semigroup K  and a 
surjective homomorphism cp : S  —>► K  such that scp ^  s’p .

2. T h e m ain  resu lt and its  p ro o f

Recall th a t the join  X  V Y  of two semigroup varieties X  and Y  is the least 
variety containing bo th  X  and Y ; in other words, X  V Y  is the closure of the
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class-theoretic union X  U Y  under the operators of taking homomorphic images, 
subsemigroups, and direct products. As mentioned in the introduction, our main 
result is the following

T h eorem . A 2 =  B 2 V B 2 .

P roof. Let V  =  B 2 V B 2 . Since A 2 is the largest proper subvariety in A 2 and 
bo th  B 2 and B 2 are proper subvarieties in A 2 , we conclude th a t V  C A 2 . Arguing 
by contradiction, assume th a t this inclusion is strict. Then there exists an identity 
th a t holds in the variety V  but fails in the variety A 2 . We choose an identity 
u =  v w ith this property w ith minimum possible value of | a lp h (^ ) |. Observe th a t 
necessarily alph('u) =  alph(/y) -  otherwise the identity u =  v would fail in the two 
element semilattice and could not be satisfied by V .

The core of the proof consists in verifying the following

C laim . The words u and v are connected.

P roof. Suppose th a t the word u is not connected. Then arguing as in the proof 
of Proposition 3 we may decompose u as a product of two non-em pty words v! 
and u" such th a t alph(V ) fl alphfV ') =  0 .  Now we make use of the fact th a t the 
subsemigroup Aq =  {6, 6a, ab,0} of A2 belongs to the variety B 2 , and therefore, it 
m ust satisfy the identity u =  v . Let the homomorphism (  : S + —>► Aq be defined as 
follows:

{ba if x  E alph(V ),
(9)

ab otherwise.

As in the proof of Proposition 3, one readily obtains th a t u (  =  b. Hence also 
v (  =  b. By (9) v (  is a product of the idem potents ab and ba in some order. Since 
ab • ba =  0, if such a product is not equal to 0, then  no occurrence of ab precedes 
an occurrence of ba . This implies th a t in the word v no occurrence of a letter from 
alphfV ') precedes an occurrence of a letter from a lp h (V ). Therefore v decomposes 
as v =  v'v" where alph(V) =  a lp h (V ), alphfV ') =  a lp h fV ') .

We want to show th a t bo th  the identities u' =  v' and u" =  v" hold in the 
variety V . First consider an arb itrary  homomorphism ip : S + —>► i?2 - Suppose th a t 
u 'p  ^  v 'p .  Then one of the two elements is not equal to 0; w ithout any loss we may 
assume th a t s =  u 'p  ^  0. Let s' be the unique inverse of s in B2- then  s's is a 
non-zero idem potent and, as one can easily verify, for any r  E the product rs 's  
is equal to either r  or 0. In particular,

u 'p  • s's =  s ^  v ’p  • s's G {v 'p ,  0}.
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Now we define a “modification” £ of the homomorphism ip by letting

{xip if x  E alph(V ), 

s's otherwise.

Taking into account the equalities alph(V) =  a lp h (V ), alph(/y//) =  alphfV ') and 
alph(^ ') fl alph(^") =  0 , we obtain

u€ =  ’ u " i  — u ' ¥  ’ s 's ~f~ v ' ¥  ’ s 's =  v ' i  ’ v" i  — v i-

This contradicts the assum ption th a t the identity u =  v holds in the variety V  
and hence in the semigroup i?2 - Thus, we conclude th a t u'ip =  v'ip under every 
homomorphism ip : £ + —>► i?2 , th a t is, B 2 satisfies the identity u' =  v ' . By the 
left-right sym m etry of B 2 , it also satisfies the identity u" =  v" .

Since the identity u =  v holds in the variety B 2 , then  by BirkhofFs Com plete­
ness Theorem  for Equational Logic (cf. [7, Theorem  14.19]) there is a deduction of 
u =  v from the identity basis (5) of B 2 . Recall th a t such a deduction is a sequence 
of words

u =  Wq => w\ => • • • => Wk =  v (1 0 )

in which Wi => Wi+ 1 (i =  0 , 1 , . . .  , k — 1 ) denotes th a t either Wi+ 1 =  Wi or Wi+i is 
obtained from Wi by a single application of an identity gi =  hi from the system (5), 
th a t is, there exist Pi,qi E S* and an endomorphism  7  ̂ : S + —>► S + such th a t 
wi =  Pi(giji)qi and Wi+ 1 =  Pi(hiji)qi. Since for each i =  0 , 1 , . . . ,  fc the identity 
u =  Wi holds in B 2 , and therefore, in the semigroup A q , we can apply to each word 
Wi the argum ent from the first paragraph of the proof of our claim. This gives for 
each i =  0 , 1 , . . .  , k a (necessarily unique) decomposition

Wi = wiw" (11)

w ith alph(tc') =  a lph (^ '), alph(tc'') =  alph(^") and alph(tc') fl alph(tc'') =  0 .
Given an index i < A;, we want to analyze how the application of the identity 

gi =  hi to the word Wi interacts w ith the decomposition (11). Observe th a t all 
words involved in the identity system (5) are connected and by Corollary 4 so are 
their images under endomorphisms of the free semigroup . In particular, the 
factor giji  of Wi is connected whence it must occur in Wi either before the bridge 
corresponding to the decomposition (11) or after this bridge. In the first case, we 
have w\ =  Pi(gi"fi)q'i and qi =  q[w", see the left hand side of Fig. 3. Then

Wi+1 = Pi(hai)qi = Pi(hiji)qi ■ w". (12)

For every identity gi =  hi in the system (5) alph(Zi^) =  a lp h (^ ) whence also 
alph(p^(/^7 ^)(/') =  alph(pi(giji)q,i) =  alph(tc '). We see th a t the right hand side
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4 Tt- * + n - ' y -  *** P i  ► U i  11 ► HI

* i n '  *
W i < W i  *

+ n - ' y -  * 4 n -  *f l

P’l
* y i  h  ►** Hi  ►

* 11 ," ►
™ i w i

Fig. 3: Two possible ways for applying the identity gi = hi to the word Wi

of (12) gives a decomposition of the word Wi+i into a product of a word over 
alph(tc') =  alph('u') w ith a word over alph(tc'') =  a lph(^"). As m entioned, such 
a decomposition is unique but, on the other hand, Wi+ 1  decomposes as Wi+ 1  =  
=  w'i+1w'i+1 where again alph(tc '+1) =  alph('u'), alph(tc''+1) =  a lph(^"). Thus, we 
m ust have tc '+1 =  Pi{hiXi)q[ and =  w " . In the second case, when the factor
gi^fi of Wi occurs w ithin w " , we have w" =  Pi(giXi)qi and pi =  tc'p '' (this situation 
is illustrated  by the right hand side of Fig. 3). Repeating the above argum ent, we 
then conclude th a t w'i+1 =  w\ and w'-+1 = p f- (hiXi)qi •

We see th a t whenever the deduction step Wi => Wi+i is ensured by an application 
of one of the identities (5), then  also w\ => tc '+1 and w" => tc''+1. Of course, the 
same conclusion holds true if the deduction step is trivial, th a t is, Wi+\ =  Wi. Thus, 
the deduction (10) gives rise to the two deductions

U   Wq  7̂ UJ 7̂ * * *  7̂ W Jç   V ,

u =  Wq => w" => • • • => = v",

th a t show th a t bo th  the identities u f =  v ' and u" =  vn follow from the identity 
basis (5) of B 2 . Thus, the identities v! =  v f and u" =  v" hold in the variety 
B 2 . As we already have proved th a t they hold in the variety B 2 , they hold also in 
V  =  B 2  V B 2 .

Since I a lph (^ ')|, | a lph(^")| < | alph('u)!, our choice of the identity u =  v ensures 
th a t bo th  the identities u f =  v ' and u" =  v n hold in the variety A 2 . However, 
together they obviously imply the identity u =  v th a t cannot hold in A 2 . This 
contradiction completes the proof of our claim.

We retu rn  to the proof of the m ain theorem. Consider i^ s(A 2 ), the free semi­
group of the variety A 2 over the alphabet £ ,  and let % : —>► F ^ (A 2 ) be the
canonical homomorphism. By the above claim and Proposition 3, u \  and v \  are 
distinct regular elements of F ^ (A 2 ). We are in a position to apply K ublanovskii’s 
lemma (Proposition 5) according to which there exists a completely 0-simple semi­
group K  and a surjective homomorphism ip : F ^ (A 2 ) —ï K  such th a t (u x )p  ^  
7  ̂ ( ^x)^-  We will arrive to a final contradiction by analyzing the possible structure
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of the sandwich m atrix  P  of the semigroup K  in its presentation as a Rees m atrix  
semigroup (cf. [4, C hapter 3]).

Since the homomorphism cp is surjective, the semigroup K  belongs to the variety 
A 2 . This means, in particular, th a t the subgroups of K  are trivial whence all entries 
of the m atrix  P  are Fs and possibly 0’s. Further, K  cannot contain a subsemigroup 
isomorphic to A 2 because A 2 £ A 2 . The sandwich m atrix  in any presentation of 
A 2 as a Rees m atrix  semigroup over the trivial group is a 2 x 2-m atrix  w ith three 
entries equal to 1 and one entry equal to 0. Therefore none of 2 x 2-subm atrices 
of the m atrix  P  can have exactly one entry equal to 0. It is easy to realize tha t, 
perm uting rows and columns of such a m atrix, one can collect all non-zero entries in 
rectangular blocks placed along the m ain diagonal. We may thus assume th a t the 
m atrix  P  is w ritten  in this block-diagonal form. Fig. 4 presents a typical example
of such a block-diagonal m atrix.

/ 1 1 1 0 0 0
1 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 0

(0 0 0 0 0 0 b

Fig. 4: A typical block-diagonal

Now let Bu  be the countable B randt semigroup over the trivial group and R uxuj 
the rectangular band w ith countably many rows and columns. It is well known 
(and easy to verify) th a t B u belongs to the variety B 2 and it is obvious th a t R ^ xu  
belongs to the variety B 2 . In the direct product B u x R ^ xuj take the set I  of all 
pairs of the form (0, r) w ith r E R ujxuj- Clearly, I  is an ideal of B ^  x R ujxuj- It 
is well known (see, e.g., [18]) th a t the Rees quotient B ^  x R ^ x u / I  is a completely 
0-simple semigroup which has a Rees m atrix  presentation w ith the sandwich m atrix  
Q being the Kronecker product of the sandwich m atrices of B u and R ujxuj- The 
sandwich m atrix  of B ^  is the identity oj x a;-m atrix and the sandwich m atrix  of 
R ujxuj is the uj x o;-m atrix filled by l ’s, whence Q can be thought of as the block- 
diagonal m atrix  w ith countably many blocks of Fs and w ith countably many rows 
and columns in each such block. Since the semigroup Fj: ( A 2 ) is countable, the 
semigroup K  is countable or finite, and the m atrix  P  has at most countably many 
rows and columns. Therefore we can select some rows and columns of the m atrix  
Q such th a t the subm atrix  formed by the intersection of these rows and columns 
coincides w ith P .  This proves th a t the semigroup K  embeds into the semigroup 
Boo x R ujxuj/ I , and thus, K  is a subsemigroup of a homomorphic image of a direct
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product of two semigroups from B 2 U B 2 . Hence K  E V  =  B 2 V B 2 . Since the 
identity u =  v has been chosen to hold in V , the images of the words u and v under 
the homomorphism x ¥  : K  must coincide. This contradicts the assum ption
th a t (ux)(p ^  (vx)(p in K . The theorem  is proved.

A c k n o w le d g m e n t. The author is very much grateful to E. W. H. Lee for a num ber 
of stim ulating discussions.
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