The deviation of light in a moving medium.

by N. V. Gally and R. M. Titow.

In the preceding work* ${ }^{*}$) it was given the deduction of law of the refraction of light in a medium, which was mowing in the direction of a normal of medium's surface. In the present work has been considered the case, when is moving in the tangential direction.

Chiefly an attention has been, applied on the deviation of the ray of light by a moving medium that appears as a consequence of the law of refraction, but not on the deduction of law, which are supposed to be invastigated in one of the succeeding works upon the common case.

It succeded to indicate that in the expression for the tangent of angel of the deviation comes in Fresnel's coefficient.

$$
\begin{equation*}
\operatorname{tg} \alpha=\beta_{1}\left(1-\frac{1}{n^{2}}\right) \text { or } \frac{v\left(1-\frac{1}{n^{2}}\right)}{q^{1}} \tag{a}
\end{equation*}
$$

The deduction founded upon the principle of relativity and the formulae of Lorenz's transformation. The authors of the present work for convenience sake of the reasoning accept Lorenz's views on the real contradiction of bodies in the direction of their motion. Let us imagine the following material arrangrment and let this arrangement be at rest (fig. 1). Let the ray' of light from the point A_{1}^{1} which is on the material circle fall at the point 0 of medium II limited by a plan surface DD_{1} perpendicular to the flat of plan. Let ${ }^{?}$ medium I be a vacuum, let a normal to the medium in the point 0 be $\mathrm{CC}_{\text {, }}$ the angel of incidence be α_{1}^{1}, the angel of refraction be $\alpha \stackrel{2}{2}$ and the radius of circle be r . Then we shall have

$$
\sin \alpha_{1}^{1}=\mathrm{n} \sin \alpha_{2}^{1} \text { or } \mathrm{a}_{1}^{1},=\mathrm{na}{ }_{2}^{1}
$$

Let us suppose now that this arrangement is mowing together with the medium II with the constant velocity v in the tangential direction DD_{1} parallel to the flat of the incidence of ray. According to Lorenz's hypothesis of the contradiction this material circle shall be converted into ellipse, the equetion of which is

[^0]$$
\frac{x^{2}}{\mathbf{r}^{2}}+\frac{\mathbf{y}^{2}}{k^{2} \mathbf{r}^{2}}=1, \text { where } k=\sqrt{1-\beta^{2}} \beta=\frac{\mathrm{r}}{\mathrm{c}}
$$
c is the velocity of light in a vaccuum. Let the ray come out from this material point \mathbf{A}_{1}^{1} of circle or the point \mathbf{A}_{1} in the fig. 2 and overtakes the point 0 in the position 0_{1}, the angel or incidence shall be already α_{1}. Passing farther in the medium II the ray must come to the material point $A_{2}^{1}-A_{2}$ in the fig. 2 , when 0 will get to 0_{2}, the angel oft refraction will be α_{2}.

Let us lead in the follow̌ing denotations:
$A_{1} 0=1_{1} ; A_{2} 0=l_{2} ; A_{1} B_{1}=b_{1} ; A_{2} B_{2}=b_{2} ; A_{1} C_{1}=a_{1} ; A_{2} C_{2}=a_{2} ;$ $00_{1}=S_{1} ; 00_{2}=S_{2}$ and let us calculate $\sin \alpha_{1}$ accordingly to the motion of ray in the vacuum. From the fig. $2: \sin x_{1} \neq a_{1}+s_{1}$

$$
\begin{array}{r}
\text { where } l_{1}=b_{1}^{2}+\left(a_{1}+s_{1}\right)^{2} \tag{I}\\
\frac{s_{1}}{l_{1}}=-\frac{v}{c}=\beta
\end{array}
$$

since s_{1} and l_{1} are the ways past away by the medium and ray in the same time. From the equation of ellipse

$$
a_{1}=k \sqrt{r^{2}-b_{1}^{2}}
$$

Substituting the signification s_{1} in the equation (1) we get the square equation for l_{i}

$$
\begin{aligned}
& \mathrm{l}_{1}^{2} \cdot \mathrm{k}^{2}-2 \beta \mathrm{a}_{1} \mathrm{l}_{1}-\left(\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}\right)=0 \\
& \text { hence } \mathrm{l}_{1}=\frac{\beta \mathrm{a}_{1} \pm \sqrt{a_{1}^{2}+k^{2} b_{1}^{2}}}{k^{2}}
\end{aligned}
$$

Substituting a_{1} we obtain

$$
l_{1}=\frac{\beta a_{1} \pm k^{2}}{k^{2}}=\frac{\beta \sqrt{\mathbf{r}^{2}}-b_{1}^{2} \pm \mathbf{r}}{\mathbf{k}} ;
$$

if $v=0(\beta=0)$ we have $l_{1}=\frac{1}{+}$ and since we admit that the way of ray 1 is positive we must take the sign of plus. Substituting l_{1} in the equation $\sin \alpha_{1}$, we get

$$
\sin \alpha_{1}=\frac{\left.k \sqrt{r^{2}-b_{1}^{2}+\beta\left(\beta \sqrt{r^{2}-b_{1}^{2}}+r\right.}\right)}{\frac{\beta \sqrt{ }}{} \frac{r^{2}-b_{1}^{2}+r}{k}}=\frac{V r^{2}-b_{1}^{2}+\beta^{2}}{\beta} \sqrt{1^{2}-b_{1}^{2}+r}
$$

Introducing the parameter

$$
\begin{gather*}
z=\sin \alpha_{1}^{1}=\sqrt{1-\left(\frac{b_{1}}{r}\right)^{2}} \text { we have } \tag{2}\\
\sin \alpha_{1}=\frac{Z+\beta}{\beta Z+1}
\end{gather*}
$$

hence $Z \beta \operatorname{Sin} \alpha_{1}+\operatorname{Sin} \alpha_{1}-Z-\beta=0$

$$
\begin{equation*}
\text { and } Z=\frac{\beta-\operatorname{Sin} \alpha_{1}}{\beta \operatorname{Sin} \alpha_{1}-1} \tag{4}
\end{equation*}
$$

We will now invastigate the mótion of ray in a medium and let us de signate the velocity of light at the resting medium by q^{1} and in the moving medium by q. Let us calculate $\operatorname{tg} a_{2}$ (fig. 2) $\operatorname{tg} a_{2}=\frac{a_{9}}{\frac{1}{b_{2}} S_{2}} ; S_{2}=$ vt time is designate by t an!

$$
\begin{equation*}
\operatorname{tg} \alpha_{2}=\frac{a_{2}+v t}{b_{2}} \tag{5}
\end{equation*}
$$

Here t is a time respecting to the observer who is resting together with a ether. For the observer who is moving together with a medium one part OA_{2} of way of the ray will be made during the time $\mathrm{t}^{1}=\frac{\mathrm{r}}{\mathrm{q}^{1}}$ out of principle of Lorenz's formula of the transformation

$$
\mathrm{t}=\frac{\mathrm{t}^{1}+\frac{\mathbf{v}}{\mathbf{c}^{2}} \mathbf{x}^{\mathbf{x}}}{\mathbf{k}}
$$

where $x^{1}=\sqrt{r^{2}-b_{2}^{2}}$ is the coordinate of point A_{2}^{1} (fig. 1).
From the equation of elipse

$$
\frac{b_{2}^{2}}{\mathrm{r}^{2}}+\frac{a_{2}^{2}}{\mathrm{k}^{2} \mathrm{r}^{2}}=1 ; a_{2}=\mathbf{k} \sqrt{\mathrm{r}^{2}-b_{2}^{2}}
$$

Substituting b_{2} and t in the expression (5) and designating

$$
\begin{align*}
& k^{2} \sqrt{r^{2}-b_{2}^{2}}+\left(\frac{r}{q^{1}}+\frac{v}{c^{2}} \sqrt{r^{2}-b_{z}^{2}}\right)= \\
& \frac{\mathrm{v}}{\mathrm{q}^{1}}=\beta_{1} \text {; we obtain } \operatorname{tg} \alpha_{2}=\cdots \quad k b_{2} \\
& k^{2} \sqrt{r^{2}-b_{2}^{2}+\beta_{1} r+\beta^{2} \sqrt{ } r^{2}-b_{2}^{2}} \underset{k b_{2}}{ } \\
& \text { and simplifying farther we have } \operatorname{tg} \alpha_{2}=\frac{V \mathbf{r}^{2} \cdots \mathbf{b}_{2}^{2}+\beta_{1} \mathbf{r}}{\mathbf{k} \mathbf{b}_{2}} \tag{6}\\
& \text { The law of refraction in the resting sistem gives }
\end{align*}
$$

$$
\begin{gathered}
\frac{\mathrm{a}_{1}^{1}}{\mathrm{a}_{2}^{1}}=\mathrm{n}=\frac{V \overline{r^{2}-\mathrm{b}_{1}^{2}}}{\boldsymbol{V} \mathrm{r}^{2}-\mathrm{b}_{2}^{2}} \\
\text { hence } \sqrt{1-\frac{\mathrm{b}_{2}^{2}}{\mathrm{r}^{2}}}=\frac{\sqrt{1-\binom{b_{1}}{\mathbf{r}}^{2}}}{\mathrm{n}}
\end{gathered}
$$

and for as mu ${ }_{c}$ h the equality (2) we shall have

$$
\sqrt{1}^{\kappa}-\left(\frac{b_{3}}{r}\right)^{2}=\frac{z}{n} ; \text { and } \frac{b_{2}}{r}=\sqrt{1-\frac{z^{2}}{n^{2}}}
$$

Substituting in (6) we got finally

$$
\begin{equation*}
\operatorname{tg} \alpha_{2}=\frac{\mathrm{z}+\beta_{1}}{k \sqrt{1-z^{2}}}, \operatorname{tg} \alpha_{2}=\frac{z+\beta_{1} n}{k \sqrt{n^{2}}} \frac{n^{2}-z^{2}}{k} \tag{7}
\end{equation*}
$$

Let us consider now a concrete case $\alpha_{1}=0$ that is, the ray falls perpendicular to a medium and direction of its motion. For a medium that is at rest we should have $\alpha_{2}=0$; in case of a relative motion of a medium we shall have a value α_{2} different from a zero, and a value α_{2} can be calculated from a formulae (4) and (7).

The formula (4) gives $Z=-\beta$; substituting z in (7) we get

$$
\operatorname{tg} \alpha_{2}=\frac{-\beta+\beta_{1} n}{k \sqrt{n^{2}-\beta^{2}}}
$$

and perceiving that $\beta_{1}=\frac{v}{c} \frac{c}{q^{1}}=\beta n ; \beta=\frac{\beta_{1}}{n}$
after a sebstitude

$$
\begin{equation*}
\operatorname{tg} \alpha_{2}=\frac{-\frac{\beta_{1}}{n}+\beta_{1} n}{k \sqrt{n}_{n^{2}-\beta^{2}}^{\beta^{2}}}=\frac{\beta_{1}\left(1-\frac{1}{n^{2}}\right)}{{ }^{n} \sqrt{1-\beta^{2}} \sqrt{1-\frac{\beta^{2}}{n^{2}}}} \tag{8}
\end{equation*}
$$

Developing the multiplicators with the redicals in a series about an increasing degrees β we have

$$
\begin{gathered}
\frac{1}{\sqrt{1-\beta^{2}}}=1+\frac{1}{2} \beta^{2}+\frac{1}{2} \frac{3}{4} \beta^{4}+\ldots \ldots \\
\frac{1}{\sqrt{1}-\frac{\beta^{2}}{n^{2}}}=1+\frac{1}{2} \frac{\beta^{2}}{n^{2}}+\frac{1}{2} \frac{3}{4} \frac{\beta^{4}}{n^{4}}+\ldots \ldots
\end{gathered}
$$

Substituting in (8) and multiplying we find

$$
\operatorname{tg} \alpha_{2}=\beta_{1}\left(1-\frac{3}{n^{2}}\right)\left[1+\beta^{1} \beta^{2}(1+\cdots)\right.
$$

Opening the parenthesis and throwing the members with β^{3} and higher degrees β we shall have finally

$$
\begin{equation*}
\operatorname{tg} \alpha_{2} \cdots \frac{v\left(1-n^{1}\right)}{q^{1}} \ldots \ldots \tag{9}
\end{equation*}
$$

that is, the light ray deviates from primary direction in case of the relative motion of a medium.

It is interesting to notice that in the expression of the tangent of angel of the deviation comes in Fresnel's coefficient and that the angel of deviation of the light ray can be so constructed as if the velocity of light had been

[^0]:) Иввестия Уральского Государственногс Университета выи. II, 1921 г.

