Формирование протонной проводимости в фазах $LaZn_{0.5}Me_{0.5}O_{2.75}$ (Me = Al^{3+} , Sc^{3+} , In^{3+})

А. В. Егорова^{1,2}, К. Г. Белова^{1,2}, И. Е. Анимица^{1,2}

¹Уральский федеральный университет им. первого Президента России Б. Н. Ельцина ²Институт высокотемпературной электрохимии Уральского отделения Российской академии наук

Поиск материалов с целью использования их в различных электрохимических устройствах в области водородной энергетики не теряет своей актуальности. Среди таких материалов можно отметить лантансодержащие перовскиты $LaMeO_3$ (Me=Al, Ga, Sc, In, Yb, Y) [1–5]. Известно, что материалы на основе алюминатов и галлатов проявляют доминирующий кислород-ионный перенос [1; 2], остальные — смешанный транспорт, в котором вклад протонной проводимости постепенно возрастает с увеличением ионного радиуса металла В-подрешетки. В увлажненных атмосферах при температурах ниже 500 °C общая проводимость допированных $LaScO_3$, $LaInO_3$, $LaYbO_3$ и $LaYO_3$ определяется преобладающим протонным переносом [2–5].

В настоящей работе при замещении половины позиций в В-подрешетке перовскитов $LaMeO_3$ (Me=Al, Sc, In) были синтезированы новые кислород-дефицитные фазы состава $LaZn_{0,5}Me_{0,5}O_{2,75}$ ($Me=Al^{3+}$, Sc^{3+} , In^{3+}). Для полученных соединений было проведено комплексное исследование структуры, состава, морфологии поверхности, а также термических и электрических характеристик. Кроме того, в работе предложена концепция формирования протонных дефектов и протонной проводимости в этих соединениях.

Твердофазный синтез образов был осуществлен в температурном режиме 700–1400 °C. По РФА установлено, что симметрия исследуемых фаз отличается. Образцы $\text{LaZn}_{0.5}\text{Sc}_{0.5}\text{O}_{2.75}$ (*LSZ*) и $\text{LaZn}_{0.5}\text{In}_{0.5}\text{O}_{2.75}$ (*LIZ*) обладают ромбической структурой, в то время как образец $\text{LaZn}_{0.5}\text{Al}_{0.5}\text{O}_{2.75}$ (*LAZ*) кристаллизуется в кубической сингонии. Рассчитанные значения приведенного объема решетки $\tilde{V}_{\text{яч}}$

и псевдокубического параметра ячейки \tilde{a} закономерно увеличиваются при увеличении размера B-катиона от алюминия (R=0,535~Å) к индию (R=0,8~Å).

Особенности структуры каждого из исследуемых образцов оказывают влияние на функциональные характеристики, а именно, на процессы гидратации и формирование протонных дефектов. Так как концентрации кислородных вакансий для исследуемых фаз $\text{LaZn}_{0,5}\text{Me}_{0,5}\text{O}_{2,75}$ ($Me=\text{Al}^{3+},\text{Sc}^{3+},\text{In}^{3+}$) номинально одинаковы, то возможно было ожидать близкие степени гидратации. Однако методом термогравиметрии было установлено, что образец $\text{LaZn}_{0,5}\text{Al}_{0,5}\text{O}_{2,75}$ не способен к диссоциативному водопоглощению. В то время как образцы LSZ и LIZ проявляют близкие степени гидратации ~0,35 моль H_2O . Методом инфракрасной (ИК) спектроскопии было подтверждено наличие протонсодержащих групп в гидратированных исследуемых составах, а также была идентифицирована их природа.

Изучена электропроводность образцов LaZn $_{0.5}$ Me $_{0.5}$ O $_{2.75}$ ($Me=\mathrm{Al^{3+}}$, Sc $^{3+}$, In $^{3+}$) как функция температуры (200–900 °C), парциального давления кислорода и влажности воздуха. Установлено, что атмосфере сухого воздуха сложные оксиды обладают смешанным типом проводимости, электронный вклад (p-тип проводимости) увеличивается с увеличением температуры. При температурах ниже 500 °C фазы проявляют доминирующий кислород-ионный транспорт.

При повышении влажности в измерительной ячейке у образцов LSZ и LIZ наблюдается появление протонного переноса, как следствие диссоциативного растворения воды из газовой фазы и формирования протонных дефектов. Установлено, что значения протонной проводимости у Sc^{3+} - и In^{3+} -образцов довольно близкие, что объясняется близкими концентрациями протонов. В образце LAZ значимый протонный перенос не реализуется. Закономерности формирования протонного транспорта соотнесены со структурными характеристиками фаз, с использованием рассчитанных значений радиуса вакансии кислорода $r_{_{v}}$.

Список источников

- 1. *Filonova E., Medvedev D.* Recent progress in the design, characterisation and application of $LaAlO_3$ and $LaGaO_3$ -based solid oxide fuel cell electrolytes // Nanomaterials, 2022. Vol. 12. P. 1991.
- 2. Bright blue emissions on UV-excitation of $LaBO_3$ (B = In, Ga, Al) perovskite structured phosphors for commercial solid-state lighting applications / B.V.N. Kumar et al. // Chimica Techno Acta. 2022. Vol. 9. P. 3–9.
- 3. Transport properties of ${\rm LaYbO_3}$ -based electrolytes doped with alkaline earth elements / A. V. Kasyanova et al. // Electrochim Acta. 2023. Vol. 439. P. 141702.
- 4. Melt growth and physical properties of bulk LaInO3 single crystals / Z. Galazka et al. // Phys Status Solidi. 2021. Vol. 218. P. 2100016.
- 5. Densification and proton conductivity of $La_{1-x}Ba_xScO_{3-\delta}$; electrolyte membranes / A. Lesnichyova et al. // Membranes. 2022. Vol. 12. P. 1084.

Экологический эффект от размещения плавучих АЭС в населенных пунктах Арктической зоны на примере города Дудинка (Красноярский край)

В. И. Еникеева

Российский государственный университет нефти и газа им. И. М. Губкина

Развитие арктических территорий в Российской Федерации является важной государственной задачей. По информации АЦ при Правительстве РФ на изолированных территориях располагаются более 1 ГВт установленной мощности электростанций, основным топливом для которых выступает дорогое (из-за сложной логистики) и низкоэкологичное дизельное топливо. Анализ береговой линии вдоль Северного морского пути (СМП, от Мурманска до Владивостока) показывает, что на протяжении трассы СМП расположено достаточно много крупных портов и объектов нефтегазовой отрасли, в качестве источников энергоснабжения, для которых целесообразно рассматривать и мобильные плавучие атомные электростанции.