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ABSTRACT 
The paper is devoted to the theoretical investigation of the magnetodipolar interparticle interac-
tion effect on remagnetization dynamics in moderately concentrated ferrofluids. We consider a 
homogenous (without particle aggregates) ferrofluid consisting of identical spherical particles 
and employ a rigid dipole model, where magnetic moment of a particle is fixed with respect to 
the particle itself. In particular, for the magnetization relaxation after the external field is instant-
ly switched off, we show that the magnetodipolar interaction leads to the increase of the initial 
magnetization relaxation time. For the complex ac-susceptibility ( ) ( ) ( )iχ ω χ ω χ ω′ ′′= +  we find 
that the this interaction leads to an overall increase of ( )χ ω′′ and shifts the ( )χ ω′′ - peak towards 
lower frequencies. Comparing results obtained with our analytical approach (second order virial 
expansion) to numerical simulation data (Langevin dynamics method), we demonstrate that the 
employed virial expansion approximation gives a good qualitative description of the ferrofluid 
magnetization dynamics and provides a satisfactory quantitative agreement with numerical simu-
lations for the dc magnetization relaxation - up to the particle volume fraction φ ~ 10% and for 
the ac-susceptibility - up to φ � 5 %. 

 

PACS number: 75.50.Mm; 64.70.Nd; 82.70.Dd. 

 

I. INTRODUCTION 

In this paper we study the remagnetization dynamics in ferrofluids - colloidally stable suspen-
sions of magnetic single-domain particles in a carrier liquid (in order to prevent aggregation of 
particles due to the magnetodipolar attraction, ferrofluid particles are covered with the special 
surfactant layers). Due to the possibility to change physical parameters and control the behavior 
of  a ferrofluid by an externally applied field, such systems are of a large interest both for funda-
mental and applied physics. Ferrofluids are used in many existing technologies and are supposed 
to be highly promising for a variety of potential technical and medical applications [1].   

Experiments demonstrate that magnetodipolar interparticle interaction changes significantly 
both the equilibrium [2] and dynamical [3] properties of ferrofluids. Theoretical models of 
dynamical properties of dilute ferrofluids with vanishing interparticle interactions have been 
proposed in [4, 5, 6, 7]. These models lead to very accurate results for very dilute ferrofluids but 
can not explain properties and behavior of ferrofluids where the interparticle interaction is 
significant.  

Depending on the energy of this magnetodipolar interaction, it can lead either to an appearance 
of homogeneous short- and long-range interparticle correlations, or to a formation of chain-like, 
drop-like and other heterogeneous internal structures [8]. At present there is no general theory 
allowing to predict internal structure in non-dilute ferrofluids at given experimental conditions. 
Therefore it is reasonable to consider effects of different internal structures on the dynamical 
phenomena in ferrofluids separately. Such idealized models can provide better insights into the 
influence of various structures and factors on the macroscopical properties of ferrofluids. 
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Combination of corresponding idealized models can serve as a basis for constructing theories of 
real magnetic fluids with typical long-range interparticle correlations, where also various 
heterogeneous particle aggregates are present.  

However, before considering dynamical properties of a ferrofluid with various particle aggre-
gates, the behavior of a homogeneous system should be properly understood. For this reason, in 
this paper we present a model of the remagnetization dynamics of a homogeneous ferrofluid 
consisting of identical particles. It is assumed that magnetic moment of each particle has a cons-
tant magnitude and is “frozen” into the particle body. We realize, that this model is obviously the 
oversimplification of real ferrofluids. The problem is not only a more or less broad distribution 
of geometric and magnetic particle parameters of real ferrofluids (this can be easily included into 
the approaches used by us) and particle aggregates often present in real systems (such aggregates 
obviously require a special treatment). A very important physical aspect also is, that the intrinsic 
magnetic anisotropy of an individual ferrofluid particle is finite (and usually not even large com-
pared to the thermal energy and magnetodipolar interaction field), so that the magnetic moment 
can rotate with respect to the particle itself. Still, the analysis of a simple model studied here is a 
mandatory first step for understanding dynamical properties of real ferrofluids. 

Remagnetization dynamics of the model outlined above is studied both analytically and using 
numerical simulations. To obtain analytical results with maximal mathematical accuracy, we 
take into account the magnetodipolar interparticle interaction using the regular method of virial 
expansion over the particle concentration. We assume that magnetodipolar interaction energy is 
less or of the same order of magnitude as the thermal energy  kT . Otherwise particle aggregates 
must appear in a ferrofluid, which treatment is out of the framework of this paper. Next, in order 
to focus on the effects of magnetodipolar interaction, we neglect here effects of the hydrodyna-
mical interaction between particles. Effects of this interaction will be considered in a separate 
publication. 

The paper is organized in the following way. In the next Section we explain in detail our analy-
tical approach, deriving the governing equation for the macroscopical magnetization dynamics. 
In Sec. III we present the numerical simulation methodology and justify our the choice of the 
short-range repulsive potential. In Sec. IV we study the effect of the magnetodipolar interparticle 
interaction first, on the magnetization relaxation after a step-wise (instant) change of the external 
field and second, on the ac-susceptibility of a ferrofluid. Here we calculate corresponding dyna-
mical system behavior and compare results of the analytical approach to numerical simulation 
studies, establishing the concentration region where the analytical theory provides a quantitati-
vely accurate description of the magnetization dynamics in ferrofluids. 

II. ANALYTICAL APPROACH AND BASIC EQUATION FOR THE 
MAGNETIZATION DYNAMICS 

We consider a ferrofluid with volume V containing N identical spherical ferromagnetic partic-
les with the diameter d. The absolute magnitude pmag of the particle magnetic moment pi,mag is 
constant, the moment is “frozen” into the particle body. We introduce the unit vector mi = pi,mag / 
pmag of the magnetic moment of the i-th particle and denote the particle radius-vector by ri. 

To calculate the macroscopic characteristics of this system, we must determine the N-particle 
distribution function PN(m1,…mN,r1,…rN). It can be found by solving the appropriate Fokker-
Planck equation, where we have to take into account magnetodipolar interactions between all 
particles. This corresponding equation is: 

( ) 2 2tr
r t

N
i i N i i N i N i N

i i i i

P DD
UP U P D P D P

t kT kT
∂ � �� �� �= + ∇ ∇ + + ∇� � � �� �∂ � � � �� �

� � � �I I I            (1) 
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where the summation in (1) is performed over particles and we have used the standard notation 
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The potential energy of the system  

( ) 1
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≠

= − ⋅ +� �� m  

contains the energy due to the external field (first term), where the reduced field mag
0

p

kT
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H
�  

is defined via the vacuum permeability µ0, and the local magnetic field H. 

Magnetodipolar interaction energy (2nd term in the expression for U) contains pair interaction 
terms wij (interaction energy of particles i and j) 
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where rij is the radius-vector between the centers of these particles. 

Rotational and translational particle diffusion coefficients 

r
p

,
6
kT

D
V η

=   t 3
kT

D
dπη

= ,   

are determined by the hydrodynamical (including the non-magnetic shell) particle diameter d, the 
carrier fluid viscosity � and the particle volume Vp = πd3/6. In solving Eq. (1) we must take into 
account the condition that the particles can not overlap: drij ≥ .  

The Fokker-Planck equation (1) can not be solved exactly for two reasons. The first one is the 
well-known problem of statistical physics – interparticle interaction in a many-particle system 
does not allow (nearly always) to solve the governing equation for a many-particle distribution 
function or to calculate the Gibbs statistical integral. The second reason is the purely mathemati-
cal difficulty arising by the solution of the Fokker-Planck equation even for the single particle.  

In order to overcome the second problem, we use the effective-field approach, suggested in [4], 
which is a version of the trial function method. According to this approach, we write the function 
PN  in the form of an equilibrium Gibbs function in some effective magnetic field He, which must 
be determined, instead of the real field H. With other words, we postulate the validity of the 
following equation: 

( ) 2 2tr
e e r t 0i i N i i N i N i N

i i i i

DD
U P U P D P D P

kT kT
� �� �� �+ ∇ ∇ + + ∇ =� � � �� �

� � � �� �
� � � �I I I               (2) 

where 

( )e e
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p
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Combining (1) and (2), we obtain: 

( )rN
i i N

i

P D
P

t kT
δ∂ � �= � �∂ � �

� I I � ,   eδ = −� � �                                         (3) 

Up to this point all transformations were exact: instead of the unknown function PN  we have 
introduced the unknown reduced field κκκκe linked to PN  by the Gibbs formula 
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1 eexpN
U
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kT

− � �= −� �
� �
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kT
� �= −� �
� �� m m r r                            (4) 

The crucial assumption of this method is that the effective field does not depend on the vectors 
mi and ri  and that the components of this field can be found from the equation for the first statis-
tical moment of the function PN . Note that for dilute ferrofluids this method leads to a very good 
agreement with experiments and results of computer simulations (see, e.g., [9]). Similar ideas 
have been successfully used by analyzing rheological properties of ferrofluids with chain-like 
aggregates [10]. 

As usual in statistical physics, in a general case interparticle interactions do not allow to cal-
culate exactly the average values of physical quantities using Eq. (4). From now on we suppose 
that particle concentration in our system is not high and use the virial expansion method. In Sec. 
V we show that this method represents a reasonable approximation when describing dynamical 
properties of low and moderately concentrated ferrofluids.  

It is convenient, first, to average the distribution function PN   over coordinates ri  of all partic-
les. Introducing the Mayer function fij = exp(-wij/kT)-1 and averaging (4) over all ri, we obtain 
the averaged N-particle distribution function pN in the form 

( )1
eexp 1N N i l ij k

li i j k

p P d Z f d−

>

� �
= = ⋅ +� �� �

� �
�∏ ∏ ∏� �r � m r                            (5) 

Expanding (5) in a power series in fij , keeping only the first two terms and performing standard 
transformations, we obtain 

( ) e
1

1 1N k ij
i jk

p N G Q
V

ψ φ
>

� �� �
� �= − − +� �� �� �� �� �

�∏                                            (6) 

Here p /NV Vφ = is the hydrodynamical (including the non-magnetic particle shell) volume 
concentration of particles and 
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Calculating the integral in the expression for Qij, we must keep in mind that the result depends 
on the shape of the (infinite) integration volume [10]. The reason for this is the long-range cha-
racter of the dipolar interaction. A physically correct way of integration must provide for a sys-
tem in thermodynamical equilibrium the equality of the magnetic field in the integration volume 
to the local physical field H in the sample region where interacting particles are situated. For this 
reason we must use the integration cave as an infinitely long cylinder, directed along the field H, 
with the trial (first) particle on the axis of this cylinder, integrating over all positions of the 2nd  
particle. Technically this means that in the integral for Qij (see above) we should use a cylindrical 
coordinate system (ρ, �, z) with the z-axis along H. First, we must integrate over the z-coordinate 
of the 2nd particle (from −∞  to +∞ , then over other coordinates. This integration order has been 
successfully used in [11] to calculate the ferrofluid equilibrium magnetization.   

Unfortunately, the complicated form of the Mayer function makes the analytical calculation of 
Qij  impossible. Here we restrict ourselves to the situation when the dipolar interaction energy wij 
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between particles is ijw kT�  or smaller. Obviously this assumption means that there are no 
heteroaggregates in the system.  

Expanding the Mayer function in a power series in wij, , keeping only the linear terms and using 
the method from [11] to calculate of the integral for Qij, we obtain 

( )8ij i jQ γ= ⋅m m ,   ),(4)( 2 xLxG λ=
x

xxL
1

coth)( −= ,   e e( )G G κ=                (7) 

where the interaction parameter
2
mag0
34

p

d kT

µλ
π

=  characterizes the ratio of the dipolar interaction 

energy of two closely placed particles to the thermal energy kT. 

Averaging Eq. (3) over the particle positions, we come to an equation identical to (3) with pN  

instead of PN.  Multiplying the resulting equation by m1  and averaging over all mi, we obtain 

[ ]( )r 1 i i N
i

D p
t

δ∂ = − ×
∂ �
� m I � m , with 

N...1
...... =                                      (8) 

Here 1 Np=� m  is the average of the orientation vector m1 of the trial particle. The ferrofluid 
magnetization is 

magnp=M � ,    
p

N
n

V V
φ= =                                                              (9) 

Using  Eqs. (6) and (7) we find (introducing Le = L(κe)) 

e( ) hκ µ=� e ,     e
e e p

e

d1
d
GN

L V
V

µ
κ

−= + ,      e

e
h H

= He ,                                   (10) 

In the thermodynamical limit (prime means a derivative with respect to �e) 

e
e e e e e

e
8

dG
L L L L

d
µ φ φλ

κ
′= + = +                                                 (11) 

Taking into account that the angular momentum operator I is antihermitian and using the appro-
ximation (6) for pN , we obtain: 

[ ]( )1 1 1 e 11 1
1

v 2i i N N
i

N
p p b G

V
δ ψ ψ ψ− 	 
× = = + −� ��m I � m � � � �                   (12) 

where [ ]1 1δ	 
= × ×� �� m � m  and 
2122Qb ψ= , and in the thermodynamical limit 

[ ]( )1 1 1 e 11 1
2i i N N

i

p p b Gδ ψ φ ψ ψ	 
× = = + −� ��m I � m � � � �                      (13) 

Combining Eqs.(6), (7) and (13), after simple transformations we have 

[ ]( )1 e e ( )i i N h h
i

p A Bδ δ δ× = − ⋅�m I � m � e � e                                       (14) 

where the functions 
 Ae=A(�e),   Be=B(�e)                                                            (15) 

are defined via 
2( ) 1 ( ) / 8 ( ( ) ( )) ( ) /A x L x x L x C x L x xφλ= − + ⋅ − ⋅  
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2( ) ( ) 8 ( ( ) ( )) ( ) /B x C x L x C x L x xϕλ= + ⋅ − ⋅ ,     ( ) 1 3 ( ) /C x L x x= −  

 Substituting Eq. (14) into (8) and (10), we obtain 

( )r e e h hD A B
t

δ δ∂ = − − ⋅	 
� �∂
�

� e � e                                                    (16) 

We arrived at a system of equations (10),(11) and (16) for the vectors � and �e. For subsequent 
calculations it is convenient to write this system in the form of a single equation with respect 
to e� . To this end we employ the fact that e hµ=� e  and write   

e
e e

h
hJ

t t t
κ µ∂ ∂∂ = +

∂ ∂ ∂
e� e ,                                                      (17) 

( )2e
e e e e

e
8 ( )

d
J L L L L

d
µ ϕλ
κ

′ ′ ′′= = + +  

Substituting (17) into the first equation of (16) and writing the scalar product of the result and 
vector eh, we obtain 

( )( )e r
e e

e
h

d D
B A

dt J
κ δ= − ⋅e �                                                      (18) 

Finally, inserting (19) into (17) and the result into (16), we arrive at the equation  

( )( )e

e

h
h h

d A
D

dt
δ δ

µ
= − − ⋅e

� e e �                                                (19) 

Equations (18) and (19) form a system of equations for �e and eh, which can be easily reduced to 
a single equation  

( ) ( )ee e e e
r e e e e2

e ee e

d A B A
D

dt J

δ
δ κ δ

µ κκ
	 
⋅� �−= − + − �� �
 �� �� �

� ��
� � � � �                                 (20) 

To find the macroscopical magnetization M = npmag�, we have to solve Eq. (20) and substitute 
the result into (10).  

III. NUMERICAL SIMULATIONS METHODOLOGY 
Our numerical simulations are based on the Langevin dynamics formalism, where the equati-

ons of motion for the relevant degrees of freedom characterizing our system are solved taking 
into account thermal fluctuations.  

For the ferrofluid model considered in this paper (particles with ‘fixed’ magnetic moments, 
which are not allowed to move with respect to the particles itself) the system of equations for the 
description of ferrofluid dynamics includes two equations - for the translational and rotational 
particle motions. For the time scale of interest (~ 10-6 sec) inertial terms can be neglected due to 
small particle sizes (~ 10 nm) and a substantial carrier fluid viscosity (~ 0.1 Ps) typical for ‘stan-
dard’ ferrofluids.  

In this approximation the equation for the translational particle motion in a ferrofluid can be 
simply deduced from the balance between the viscous force –b·dr/dt and all other forces acting 
on the i-th ferrofluid particle: 

dip rep fl
,mag( )i

i i i i i
d

b U
dt

= ∇ − ∇ +r p H F    (21)  

Here b denotes the viscous friction coefficient, which for a spherical particle with the hydrodyna-
mical radius Rhyd in a fluid with the viscosity � is b = 6��Rhyd. The first term on the right-hand 
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side represents the magnetodipolar interaction force  dip dip dip
mag( )U= −∇ = ∇F p H  and the se-

cond one - the steric repulsion force rep repU= −∇F . This latter force is due to the non-magnetic 
shell surrounding the magnetic particle kernel. The choice of the repulsive potential Urep will be 
discussed in detail below. The third term is a stochastic thermal force Ffl  responsible for a trans-
lational Brownian motion. This force has δ-functional correlation properties  

fl fl
, ,(0) ( ) 2 ( )i j i ijF F t kTb tξ ψ ξψδ δ δ� ⋅ � = ⋅  

in our model, where the hydrodynamic interaction between particles is neglected. 

Employing the same approximations, we can write the equation for particle rotational motion 
as the balance between the viscous torque and all the other torques:   

 ,mag dip fl
,mag ,mag ,mag

i
i i i i i i

d

dt
ζ 	 
 	 
= − × × − ×� � � �

p
p p H p T    (22) 

Here �i = 8��Rhyd
 3 is the rotational viscous friction coefficient. The first term on the r.h.s. is the 

torque exerted on the magnetic moment by the magnetodipolar interaction field Hdip. This torque 
is directly ‘transferred’ on the particle itself due to the ‘fixed moment’ approximation of our mo-
del.  The random torque Tfl due to the thermal bath fluctuations leads in the Langevin dynamics 
formalism to the rotational Brownian motion of the particle. If the hydrodynamic interaction is 
be neglected, the components of Tfl have the same simple correlation properties as for the ran-

dom force Ffl: fl fl
, ,( ) ( ) 2 ( )i j i ijT t T t kT t tξ ψ ξψζ δ δ δ′ ′� ⋅ � = ⋅ − . 

The system of stochastic differential equations (SDE) (21)-(22) is solved by the optimized Bu-
lirsch-Stoer method (see [12] for the description of the basic idea of this algorithm), which con-
verges to the Stratonovich solution of these SDEs. Methods for the numerical evaluation of the 
long-range magnetodipolar field Hdip present in both equations (21) and (22) are discussed in 
detail in our review [13]. For this study, where a formation of particle aggregates was not expec-
ted (the absence of such aggregates was confirmed by simulations), we have chosen the modified 
Lorentz cavity method. We have used the cut-off radius of the Lorentz sphere L 2R r= �∆ � , whe-
re r�∆ �  is the mean interparticle distance. It was checked that further increase of RL does not 
affect simulation results within statistical errors. 

All results presented below have been obtained for a system of particles with the magnetic core 
radius Rmag = 6 nm, non-magnetic shell thickness h = 2 nm and the particle material magnetiza-
tion M = 400 G, for which the interaction parameter λ (defined after Eq. (7)) is λ = 0.8. 

The next important methodical question is the choice of the short-range repulsive potential Urep 
present in (21). The corresponding issue was discussed in [13] from the ‘physical’ point of view, 
i.e., considering the plausibility of the choice for Urep as a ‘representative’ for a steric repulsion 
force acting between surfactant-coated magnetic particles in real ferrofluid. In this particular re-
search, however, we have an additional methodical problem: taking into account that one of the 
main goals of this study is the comparison between analytical theory and numerical simulations, 
we have to choose the repulsive potential in such a way that it does introduce an artificial bias 
into such a comparison. 

The simplest choice which would enable a most straightforward comparison between analyti-
cal theory and numerical simulations would be the hard-core potential (Urep = 0 for ∆r > 2Rhyd 
and Urep = � for ∆r < 2Rhyd). This choice would exactly correspond to the condition that particles 
are not allowed to overlap used by the analytical solution of the basic Eq. (1). Unfortunately, the 
hard core-potential is not differentiable, so that the dynamic equation containing it can not be 
solved in a standard way. Instead, the so called ‘collision-based’ algorithms (see [14] for the 
review of these methods) should be employed, where the evaluation of the next collision time is 
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used to determine the maximal time step and the system behavior after the particle collision. 
Such algorithm performs quite well when the hard-core potential only exists in the system under 
study. However, in the presence of another potential (like the magnetodipolar interaction present 
in our case), the evaluation of the collision time becomes a delicate matter and the ‘collision-
based’ algorithms are known to work very slow.  

For this reason we have chosen several kinds of analytical short-range potentials and tested 
whether and how the simulation results depend on the kind of Urep. Our first choice was the pure-
ly exponential (Yukawa-type) potential rep

mag1 ( ) exp( ( 2 ) / )U r B r R h= − − . The decay radius of 
this potential is equal to the non-magnetic shell thickness h and the amplitude B is chosen to be 
much larger than the maximal magnetodipolar interaction energy of particles with the interpar-
ticle distance equal to the magnetic core diameter: dip 2

max mag( / 3)E M Vπ=  (here M is the particle 
magnetization and Vmag - the volume of the magnetic particle core). 

The second potential tested by us was the potential of the screened-Coulomb type 

 magrep
2

2exp( / )
( ) ,      q

r Rs q
U r A s

s h

−−= =     (23) 

Here the constant q controls the screening radius rscr = hq, and the amplitude Aq was chosen so 
that the repulsion force due to the potential (23) was equal to the maximal magnetodipolar attrac-
tion force acting between particles placed at the distance ∆r = 2Rhyd. When the constant q decrea-
ses, the screening radius scr 0r → , and the amplitude qA → ∞  preserving the property that the 

repulsion force  Frep(∆r = 2Rhyd) is equal to the maximal magnetodipolar attraction force. In this 
sense we can say that this repulsive potential converges to the hard-core potential with Rcore = 
2Rhyd when 0q → . 

Test simulation results for the exponential potential rep
mag1 ( ) exp( ( 2 ) / )U r B r R h= − −  with 

dip
max10B E= ⋅  and screened-Coulomb potentials rep

2 ( )U r  with two very different values of the 
constant q (q = 0.5 and q = 4.0) are shown in Fig. 1. Potential dependencies on the interparticle 
distance for all three potentials are shown in Fig. 1(a). The magnetization time-dependencies 
m(t), computed for these three types of Urep after the initially applied magnetic field H = 200 Oe 
is instantly switched off, are displayed in the part (b). One can see that within the statistical 
simulation errors all the time-dependencies for all three potentials fully coincide, thus ensuring 
the independence of the simulation results on the choice of the short-range potential for our sys-
tem. This proves that the differences between the analytical theory and numerical simulations 
observed and discussed below are not due to an improper choice of the short-range repulsive 
potential in our simulations.  

Concluding this discussion, we remind that the question concerning the dependence of the 
equilibrium ferrofluid behavior on the exact form of short-range repulsion potential was studied 
analytically in [15] (see also references therein). The main result of this study was that for dilute 
and moderately concentrated ferrofluid where the three-particles correlations are not very impor-
tant, the equilibrium magnetization of a homogeneous (without particle aggregates) ferrofluid 
does not depend on the form of this short-range potential. Our numerical simulations show that 
this conclusion remains true also for the dynamical properties of a ferrofluid. 

IV. RESULTS AND DISCUSSION 

IV. 1. Remagnetization dynamics after an instantaneous change of an applied field 

Let us assume that at the time t = 0 the magnitude of an applied field changes instantaneously 
from the initial value H1 to the final one H2, whereby direction of the field remains the same.  
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The analytical approach outlined above (Sec. II) leads in this case to the following version of 
the Eq. (20): 

( )e e e
r e 2

e

d� A B
D �

dt J
κ

	 
−= − − �
� �

                                                 (24) 

where the initial condition is 

e 1   at   0tκ κ= =                                                          (25) 

with 1,2 0 mag 1,2 /p H kTκ µ= . 

The Cauchy problem (24,25) can be easily solved with any commercially available software 
package capable to handle ordinary differential equations.  

Numerical simulations of the remagnetization dynamics are performed in the following way. 
We start with the system of particles which magnetic moments are aligned in the direction of the  
external field H1. The system is equilibrated in this field until the magnetization does not chan-
ged anymore (in frames of statistical errors); the ‘annealing’ time interval ∆tann = 5tBr (tBr is the 
Brownian relaxation time) is usually long enough to achieve this equilibrium. Afterwards, the 
external field is instantly changed to H1 and the magnetization relaxation is recorded. To achieve 
a high accuracy required, in particular, to determine the relaxation time, we have performed the 
averaging over Natt = 32 independent runs for a system of Np = 1000 particles. 

 Corresponding analytical and numerical simulation results are compared for the step-wise dec-
rease and increase of the applied field in Fig. 2 and 4.  

For the magnetization decay after the external field is switched off (Fig. 2), one can see that the 
analytical model agrees with the simulation results fairly well for ferrofluids with concentration 
of the magnetic phase up to φ � 6 %, what represents - from the “applied” point of view - a mo-
derately concentrated ferrofluid. It is interesting to note that the substantial contribution to the 
disagreement between analytical theory and numerical simulations results from the correspon-
ding disagreement between the initial (equilibrium) magnetization values. The latter is due to the 
overestimation of the equilibrium ferrofluid magnetization by the second order virial expansion 
approach. 

This important issue is illustrated in Fig. 3, which shows the concentration dependence of the 
relaxation time defined as 

rel

e 1
/

z

z

m
t

d m dt κ κ=

� �=
� �

                                                               (26) 

after the instant field decrease from H1 = 200 Oe to H2 = 0, which corresponds to the initial stage 
of the relaxation process shown in Fig. 2.  

This plot demonstrates, on the one hand, that the magnetic interaction between particles increa-
ses the magnetization relaxation time (decreases its relaxation rate) at the initial relaxation stage. 
In the studied concentration range the increase of trel is nearly linear with concentration. This 
increase is caused by the formation of short-range correlation between particle moments; the 
corresponding correlation degree increases with the particle concentration due to the magneto-
dipolar interparticle interaction.  

On the other hand, Fig. 3 shows that a good agreement between the analytical model and 
numerical simulations concerning the initial relaxation time persists up to the highest particle 
volume concentration studied here (φ = 14 %, which from the experimental point of view means 
a highly concentrated ferrofluid), so that the analytical theory predicts this dynamical system 
feature much better than its equilibrium magnetization value. 
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The same line of arguments allows to explain why the agreement between theory and simula-
tions is much better (persists up to higher concentrations) when the external field is initially ab-
sent (H(t = 0) = 0) and then is instantly switched on (see Fig. 4). In this case, first of all, the ini-
tial (for t = 0) equilibrium magnetization is, of course, absent (M(t = 0) = 0) both in analytical 
theory and simulations. Moreover, one can show analytically that in the second order virial 
expansion the initial slope of the magnetization curve dmz(t)/dt does not depend on the particle 
concentration. Using numerical simulations we have verified, that this analytical result is valid 
up to the highest studied concentration φ = 14%. So for the magnetization increase after the 
external field is switched on, the discrepancy between analytical theory and simulation results 
arises due to the different rate of the magnetization change when the system becomes magneti-
zed up to some extent, as it can be seen from Fig. 4.  

Concluding this subsection, we would like to consider the magnetization relaxation after an 
instant change of the external field when the effective field κe is nearly equal to the final field κ2 
( e 2 2/ 1κ κ κ− � ). In this case the relaxation time �2, which characterizes this 'linear' remagneti-

zation dynamics, exhibits a non-trivial dependence on the final field value κ2, as we show below.  

In the linear approximation with respect to δκ = κe − κ2 equation  (24) can be written as 

 ( )e 2 2
r e 2

2

d� A B
D �

dt J
κ

	 
−= − − �
� �

 ,     )(,,,, 2222 κJBAJBA =                 (27) 

One can easily show that in the same approximation Eq. (27) leads to   

2

2

τ
µµµ −

−=
dt
d

,  where  2
2 2 2

r 2 2

1
,     ( )

J
D A B

τ µ µ κ
	 


= = �−� �
                      (28) 

which allows a straightforward calculation of the relaxation time τ2. 

Corresponding results presenting the relaxation time �2 as a function of the final field κ2 are 
shown in Fig. 5. One can see that the interaction between particles increases τ2 (i.e. decreases the  
remagnetization rate) when the field κ2 is relatively weak and decreases τ2 (accelerates the 
remagnetization) when κ2 is high.  

Such a non-trivial dependence of τ2 on the final field κ2 is a result of the competition between 
two factors. The first one is the usual effect of the interparticle interaction, which decreases the 
relaxation rate analogous to the remagnetization dynamics after a large change of an external 
field occurs (see above). The second factor is the well known effect of the increase of a mean 
particle magnetic moment due to the interaction between particles [9, 11]. The last factor increa-
ses the remagnetization rate. When the final field is weak or moderate, the first factor dominates, 
when the field is strong – the second one.   

IV.2. Complex susceptibility 
In this section we study the ferrofluid response to a linearly polarized oscillating field  

Hz = H0�sinω t,   Hx = Hy = 0                                                      (29) 

Analytical approach. Equation (20) now reads 

( )r 0 sin )e e e
e

e

d� A B
D � t

dt J
κ ω

	 
−= − − �
� �

,   mag 0
0 0

p H

kT
κ µ=                                    (30) 

This equation can be also easily solved numerically. Substituting κe(t) obtained from (30) into 
Eqs. (10) and (11), we find the mean z-projection of the moment unit vector ( ) ( )z zt m tµ ≡ � � . The 
Fourier transforms 
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0

( ) ( )sin( )z t t dtµ µ
∞

′ Ω = Ω�               
0

( ) ( ) cos( )z t t dtµ µ
∞

′′ Ω = Ω�                     (31) 

provide the real ( )µ′ Ω  and imaginary ( )µ′′ Ω  parts of µω, related to the corresponding parts of 
the ferrofluid magnetization Fourier transform as Mω=npmagµω.  The index ω means here that the 
applied field oscillates with the frequency ω.   

We define the reduced complex susceptibility 

( ) ( )
red

0h
ωµ ω

χ ω =  ,                                                               (32) 

where the reduced field is defined via the saturation magnetization of the particle material MS as 
h0 = H0/MS. The reduced susceptibility (32) is proportional to the standard susceptibility χ = 
M/H0 which describes the reaction of the ferrofluid at the same frequency ω as the frequency of 
the applied field. However, the reduced quantity χred is more convenient to study the effects of 
the interparticle interaction, because the trivial proportionality of the standard susceptibility χ = 
M/H0 to the particle concentration is eliminated (we remind that µz(t) is the average z-projection 
of the magnetic moment unit vector).  

Numerical ‘measurements’ of the complex susceptibility are straightforward and described in 
detail in our review [13]. In short, we start simulations from the state with chaotically oriented 
particle magnetic moments and ‘anneal’ the system during ∆tann = tBr in the absence of an exter-
nal field. A shorter annealing time - compared to the simulations of the magnetization relaxation 
described above - is possible, because the average magnetization does not change during the equ-
ilibration process, so that only short-range correlations between the particle moments have to be 
established. Afterwards, we switch on the oscillating field 0 sin( )zH tω=H e  and compute the in-
phase and out-of-phase responses of the z-component of magnetization (L is the number of the 
time steps). Dividing the results by the field amplitude and by the saturation magnetization of the 
system (in order to eliminate the proportionality of χ = M/H to the particle concentration, as by 
the definition (32)) 

red red
10

red red
10

1 1
Re( ) ( ) sin( )     

1 1
Im( ) ( ) cos( )

L

z l l
l

L

z l l
l

m t t
h L

m t t
h L

χ χ ω

χ χ ω

=

=

′≡ = ⋅ � � ⋅

′′≡ = ⋅ � � ⋅

�

�
         (33) 

we obtain the complex susceptibility per particle χred. To obtain the frequency dependence of the 
ac-susceptibility at a given temperature χ red(ω), we perform the ‘measurements’ (33) at a set of 
frequencies sufficiently ‘dense’ to resolve all features of this dependence. To obtain the results 
with a sufficiently ‘good’ statistics, we have carried out the simulations during Ncyc = 5 field cyc-
les at each frequency (so that simulations are especially time-consuming in the low-frequency 
region), and performed the averaging over Natt = 8 independent runs for a system with Np = 500 
particles each. 

Fig. 6 demonstrates the comparison of analytical results obtained using (30-32) and numerical 
simulations for the real redχ′ and imaginary redχ′′  susceptibility parts. From the qualitative point of 
view, both analytical approach and numerical simulations predict the shift of the peak on the 
imaginary susceptibility part ( red ( )χ ω′′ -dependence) towards lower frequencies with increasing 
particle volume fraction φ. This is in a qualitative agreement with the increase of the relaxation 
time trel with the growing particle concentration discussed above. Quantitatively, we note that the 
disagreement between analytical theory and numerical simulations is more significant (for one 
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and same particle concentration) than for the magnetization relaxation study performed in the 
previous subsection. The explanation of this phenomenon can be as follows. For all concentra-
tions, the deviation between the analytical approach and simulation results for the imaginary part 
of the ac-susceptibility has different signs for low and high frequencies (see Fig. 6). Taking into 
account, that the magnetization relaxation after an instantaneous change of an external field 
contains contributions from all frequencies, the difference between the ‘analytical’ and 
‘numerical’ susceptibilities may be partially ‘averaged out’ for the magnetization relaxation 
process. 

CONCLUSION 

In this paper we have studied the influence of the magnetodipolar interparticle interaction on 
the remagnetization dynamics of a homogeneous ferrofluid using an analytical model and nume-
rical simulations. The analytical model is based on the regular second order virial approximation 
and does not contain any adjustable parameters or heuristic constructions. It leads to a good 
quantitative agreement with computer simulation results (which can be considered as exact for 
our ferrofluid model) up to the volume concentration of magnetic phase φ ~ 5-10%, depending 
on the type of the remagnetization dynamics under study. We note, that these volume concentra-
tion can be considered as being relatively high from the point of view of modern ferrofluid 
applications. 

Our results show, that the magnetodipolar interaction increases the characteristic time of the 
magnetization decay immediately after the applied field is switched off. For the magnetization 
relaxation for the case when the initial field is close to the final one, the relaxation time demon-
strates a more complicated behavior, increasing with the particle concentration if the final field is 
weak and decreasing if this field is strong. The main effect of the magnetodipolar interaction on 
the frequency dependence of the ferrofluid ac-susceptibility is twofold: this interaction enhances 
its imaginary part, and shifts the peak on the ( )χ ω′′ -dependence towards lower frequencies, in 
accordance with the increase of the system relaxation time mentioned above. 

Our study of the ferrofluid dynamics has been performed for the ‘fixed dipole’ model, where 
the particle magnetic moment is fixed with respect to the particle itself. The understanding of 
this simple model is the necessary first step for the theoretical analysis of this complex system. 
However, we point out, that in order to properly understand the behavior of real ferrofluids, the 
inclusion of the hydrodynamical interparticle interaction and the extension of the model to allow 
for the internal magnetic degrees of freedom (rotation of the magnetic moment relative to the 
particle due to the finite value of the single-particle magnetic anisotropy) is necessary. 
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Figure captions 

Fig. 1. Magnetization relaxation curves after switching the applied field H = 200 off (at t/tvisc = 
100) for a ferrofluid with the magnetic particle volume fraction φ = 10 % simulated with various 
short-range repulsion potentials U(r) as shown in the legends. It can be clearly seen that results 
for various U(r) coincide within statistical errors. 

Fig. 2. Comparison of the analytical theory (open circles) and numerical simulation results (solid 
lines): magnetization relaxation mz(t) after switching off the external field H = 200 Oe at t = 0 for 
various volume fractions of magnetic particles φ. Analytical results agree reasonably well with 
numerical simulation up to the concentration φ � 6%. Note that the disagreement between simu-
lations and analytics is largely due to the difference between the initial (equilibrium) magnetiza-
tion values meq(H = 200). Particle parameters: magnetic core radius Rp = 6 nm, shell thickness h 
= 2 nm, magnetization of the core material M = 400 G. 

Fig. 3. Concentration dependence of the initial relaxation time calculated analytically using the 
definition (26) (solid line) and computed numerically from the simulated relaxation curves mz(t) 
as described in the paper text (open squares, dashed line is a guide for an eye). In contrast to re-
laxation curves, 'analytical' and 'numerical' initial relaxation times nearly agree (within statistical 
errors of numerical simulations) up to the highest studied concentration φ = 14 %. 

Fig. 4. The same as in Fig. 2 for the dc-magnetization, when the field H = 200 Oe is instantly 
switched on at t = 0. Particle parameters are the same as in Fig. 2. Note, that the agreement bet-
ween analytical results and numerical simulations is much better than for the mz(t)-relaxation 
after switching the external field off (compare to the Fig. 2).  

Fig. 5. Dependence of the magnetization relaxation time trel after the instant change of the appli-
ed field init finH H→ on its final value Hfin when the initial field Hinit is only slightly smaller than 
Hfin for various particle concentrations as shown in the legend. Note that the relaxation time trel 
increases with the particle concentration φ for small final fields Hfin < 20, but decreases with φ  
for large fields Hfin > 20.  

Fig. 6. Real (top series) and imaginary (bottom series) parts of the complex susceptibility χ(ω) of 
a ferrofluid with the same particle parameters as on previous figures for three particle concentra-
tions as indicated in the legend. Note, that the agreement between numerical results (full squares) 
and analytical values (open circles) for the susceptibility is significantly worse then for the mag-
netization relaxation (compare curves on e.g., Fig. 2 and on this figure for one and the same par-
ticle concentration). 
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